Fast waveform extraction from gravitational perturbations

Alex Benedict¹ Scott Field² Stephen Lau¹

¹University of New Mexico, Mathematics and Statistics ²University of Maryland, Department of Physics

June 16, 2012

15th Capra Meeting

- 4 回 ト 4 ヨ ト 4 ヨ ト

Introduction

Theory: boundary and extraction kernels Practice: implementation with tables and results Final remarks

Outline

Introduction

Theory: boundary and extraction kernels

Practice: implementation with tables and results

Final remarks

・ロト ・同ト ・ヨト ・ヨト

2

Motivation

- Recover the asymptotic signal reaching future null infinity using only knowledge of a signal recorded at an arbitrarily close location
- Theoretical and practical interest gravitational waveform modeling

Approach

- ▶ Will show convolution with extraction kernels yields asymptotic signal
- Closely related to exact radiation boundary kernels
 - > On a spatially finite computational domain we require boundary conditions
 - ▶ Will show extraction kernels are given as an integral over boundary kernels

Old area of study, some especially relevant techniques...

- Geometric approach using hyperboloidal-layers (Zenginoglu, Diener)
- Gravitational multipoles for general relativity linearized about flat spacetime (Abrahams and Evans)

(ロ) (同) (E) (E) (E)

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Outline

Introduction

Theory: boundary and extraction kernels

Practice: implementation with tables and results

Final remarks

・ロン ・回と ・ヨン ・ヨン

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

3+1 wave equation

We wish to solve...

$$(-\partial_t^2 + \partial_x^2 + \partial_y^2 + \partial_z^2)\psi = 0$$

Problem posed on spatially unbounded domain and with compactly supported initial data.

<ロ> (日) (日) (日) (日) (日)

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

3+1 wave equation

We wish to solve...

$$(-\partial_t^2 + \partial_x^2 + \partial_y^2 + \partial_z^2)\psi = 0$$

Problem posed on spatially unbounded domain and with compactly supported initial data.

We actually solve...

- For computational reasons the problem is solved on a spatially finite domain
- Outer *computational* boundary is a sphere located at $r = r_b$

GOAL: mimic open space problem by i) supplying correct non-reflecting boundary conditions and ii) recovering solution which escapes to infinity.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

4 step roadmap

Working in the Laplace frequency domain...

- 1. What are the outgoing solutions?
- 2. What are the outgoing boundary conditions?
- 3. What is asymptotic solution? (preview: related to boundary conditions)
- 4. Finally, inverse Laplace transform to get time-domain information.

Flatspace and RWZ wave equations follow similar approach. However, we may carry out 4 steps analytically for flatspace, while relying more heavily on numerical results for the RWZ equations.

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Laplace transformed wave equation

Flatspace wave equation for spherical harmonic modes:

$$\psi = \sum_{\ell m} \frac{1}{r} \Psi_{\ell m}(t, r) Y_{\ell m}(\theta, \phi) \rightarrow \left[\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial r^2} + \frac{\ell(\ell+1)}{r^2} \right] \Psi_{\ell m} = 0$$

<ロ> (日) (日) (日) (日) (日)

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Laplace transformed wave equation

Flatspace wave equation for spherical harmonic modes:

$$\psi = \sum_{\ell m} \frac{1}{r} \Psi_{\ell m}(t, r) Y_{\ell m}(\theta, \phi) \rightarrow \left[\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial r^2} + \frac{\ell(\ell+1)}{r^2} \right] \Psi_{\ell m} = 0$$

• Laplace transformed solution $\hat{\Psi}_{\ell m}(s,r) = \int_0^\infty \Psi_{\ell m}(t,r) \mathrm{e}^{-st} dt$ solves

$$\left[s^2 - \frac{\partial^2}{\partial r^2} + \frac{\ell(\ell+1)}{r^2}\right]\hat{\Psi}_{\ell m} = \frac{\partial\Psi_{\ell m}}{\partial t}(0,r) + s\Psi_{\ell m}(0,r)$$

This equation serves as starting point for our analysis

・ロト ・同ト ・ヨト ・ヨト

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Outgoing solutions

$$\left[s^2 - \frac{\partial^2}{\partial r^2} + \frac{\ell(\ell+1)}{r^2}\right]\hat{\Psi}_{\ell} = 0$$

- Ordinary differential equation
- A modified Bessel equation solutions well studies
- ► General outgoing solution: $\widehat{\Psi}_{\ell}(s, r) = a(s)s^{\ell}e^{-sr}W_{\ell}(sr)$ Where a(s) some known function encoding the initial data
- Key point: Kernels are built from W_{ℓ} and its derivative

•
$$W_{\ell}(sr) = (sr)^{-\ell} \sum_{k=0}^{\ell} c_{\ell k}(sr)^k$$

- Coefficients $c_{\ell k}$ known (e.g. Jackson)
 - Example $W_2(sr) = (sr)^{-2} [3 + 3sr + (sr)^2]$

<ロ> (四) (四) (三) (三) (三)

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Frequency domain boundary conditions for outgoing modes

- We supply 1 piece of information: $(\partial_t + \partial_r) \Psi_{\ell} = ???$
- Compute $s + \partial_r$ for an outgoing solution $\widehat{\Psi}_\ell(s, r) = a(s)s^\ell e^{-sr} W_\ell(sr)$

$$\begin{split} s\widehat{\Psi}_{\ell}(s,r) &+ \partial_{r}\widehat{\Psi}_{\ell}(s,r) = \frac{1}{r} \left[sr \frac{W_{\ell}'(sr)}{W_{\ell}(sr)} \right] \widehat{\Psi}_{\ell}(s,r) \\ &= \frac{1}{r} \left[\sum_{k=1}^{\ell} \frac{b_{\ell,k}/r}{s - b_{\ell,k}/r} \right] \widehat{\Psi}_{\ell}(s,r) \equiv \frac{1}{r} \widehat{\Omega}_{\ell}(s,r) \widehat{\Psi}_{\ell}(s,r) \end{split}$$

- $b_{\ell,k}$ are zeros of $W_\ell(b_{\ell,k}) = 0$
- $\widehat{\Omega}_{\ell}(s, r)$ is the boundary kernel evidently a sum-of-poles

・ロト ・同ト ・ヨト ・ヨト

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Time domain boundary conditions for outgoing modes

Using well known properties of inverse Laplace transforms...

$$\partial_t \Psi_\ell + \partial_r \Psi_\ell = rac{1}{r} \int_0^t \Omega_\ell(t-t',r) \Psi_\ell(t',r) dt'$$

where
$$\Omega_\ell(t,r) = \sum_{k=1}^\ell rac{b_{\ell,k}}{r} \exp{\left(rac{b_{\ell,k}t}{r}
ight)}.$$

Observations

- Exact outgoing boundary condition in time domain at any rb
- Numerical solution computed with boundary at r_b and ∞ are *identical*

・ロト ・同ト ・ヨト ・ヨト

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Flatspace teleportation/extraction for outgoing modes

• Using knowledge of the outgoing solution $\widehat{\Psi}_{\ell}(s,r) = a(s)s^{\ell}e^{-sr}W_{\ell}(sr)^1$

$$\widehat{\Psi}_{\ell}(s, r_2) = \mathrm{e}^{s(r_1 - r_2)} \left[\frac{W_{\ell}(sr_2)}{W_{\ell}(sr_1)} \right] \widehat{\Psi}_{\ell}(s, r_1) \equiv \mathrm{e}^{s(r_1 - r_2)} \widehat{\Phi}_{\ell}(s, r_1, r_2) \widehat{\Psi}_{\ell}(s, r_1)$$

• $\widehat{\Phi}_{\ell}(s, r_1, r_2)$ is the teleportation kernel

• When $r_2 = \infty$, $\widehat{\Phi}_{\ell}(s, r_1, \infty)$ is the extraction kernel

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Connection with boundary kernels

Straightforward to show

$$\widehat{\Phi}_{\ell}(s, r_1, r_2) = \frac{W_{\ell}(sr_2)}{W_{\ell}(sr_1)} = \exp\left[\int_{r_1}^{r_2} \frac{\widehat{\Omega}_{\ell}(s, \eta)}{\eta} d\eta\right]$$

Teleportation kernel is an integral over boundary kernels

• $\widehat{\Phi}_{\ell}(s, r_1, r_2)$ is numerically generated and **NOT** a sum of poles. How should we invert to the time domain?

・ロト ・同ト ・ヨト ・ヨト

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Need for rational approximation

Propose that we can write

$$\widehat{\Phi}_{\ell}(s, r_1, r_2) pprox rac{\mathsf{degree} \ d - 1 \ \mathsf{polynomial}}{\mathsf{degree} \ d \ \mathsf{polynomial}} = \sum_{i=1}^d rac{\gamma_i}{s - \beta_i}$$

- Clearly rational approximation won't be accurate for all $s \in \mathbb{C}$
 - In fact infinitely bad
- ▶ If rational approximation is accurate for only *s* ∈ iℝ we can *analytically* perform the inversion!
- Carried out via a non-linear least squares fitting procedure. Details of this "black box" unimportant: Approximation known and accurate
 - Typical pointwise relative error of 10⁻¹² achieved

・ロト ・同ト ・ヨト ・ヨト

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Schematic for practical extraction kernel generation

Used for for flatspace wave and RWZ equations

1. Working in the frequency domain, identify the boundary kernel $\widehat{\Omega}_{\ell}(s,r)$

- 4 回 ト 4 ヨト 4 ヨト

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Schematic for practical extraction kernel generation

Used for for flatspace wave and RWZ equations

- 1. Working in the frequency domain, identify the boundary kernel $\widehat{\Omega}_\ell(s,r)$
- 2. Numerically integrate to generate the relevant teleportation/extraction kernel $\widehat{\Phi}_{\ell}(s, r_1, r_2) = \exp\left[\int_{r_1}^{r_2} \frac{\widehat{\Omega}_{\ell}(s, \eta)}{\eta} d\eta\right]$

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Schematic for practical extraction kernel generation

Used for for flatspace wave and RWZ equations

- 1. Working in the frequency domain, identify the boundary kernel $\widehat{\Omega}_\ell(s,r)$
- 2. Numerically integrate to generate the relevant teleportation/extraction kernel $\hat{\Phi}_{\ell}(s, r_1, r_2) = \exp\left[\int_{r_1}^{r_2} \frac{\widehat{\Omega}_{\ell}(s, \eta)}{\eta} d\eta\right]$
- 3. Evaluate this objects along inversion path $s \in i\mathbb{R}$

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Schematic for practical extraction kernel generation

Used for for flatspace wave and RWZ equations

- 1. Working in the frequency domain, identify the boundary kernel $\widehat{\Omega}_\ell(s,r)$
- 2. Numerically integrate to generate the relevant teleportation/extraction kernel $\widehat{\Phi}_{\ell}(s, r_1, r_2) = \exp\left[\int_{r_1}^{r_2} \frac{\widehat{\Omega}_{\ell}(s, \eta)}{\eta} d\eta\right]$
- 3. Evaluate this objects along inversion path $s \in \mathrm{i}\mathbb{R}$
- 4. Rational approximation to good agreement on $s\in\mathrm{i}\mathbb{R}$

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Schematic for practical extraction kernel generation

Used for for flatspace wave and RWZ equations

- 1. Working in the frequency domain, identify the boundary kernel $\widehat{\Omega}_\ell(s,r)$
- 2. Numerically integrate to generate the relevant teleportation/extraction kernel $\widehat{\Phi}_{\ell}(s, r_1, r_2) = \exp\left[\int_{r_1}^{r_2} \frac{\widehat{\Omega}_{\ell}(s, \eta)}{\eta} d\eta\right]$
- 3. Evaluate this objects along inversion path $s \in \mathrm{i}\mathbb{R}$
- 4. Rational approximation to good agreement on $s\in\mathrm{i}\mathbb{R}$
- 5. Analytically perform an inverse Laplace transform using the rationally approximated kernel

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Regge–Wheeler equation (Zerilli follows similar approach)

$$-\partial_t^2 \Psi_{\ell m} + \partial_x^2 \Psi_{\ell m} - \frac{f(r)}{r^2} \left[\ell(\ell+1) - \frac{6M}{r} \right] \Psi_{\ell m} = 0$$

 $x = r + 2M \log(\frac{1}{2}r/M - 1)$ is tortoise coordinate and f(r) = 1 - 2M/r

 One can find (and numerically integrate) an ODE in the Laplace frequency domain for the RWZ boundary kernel (Lau 2004)

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

$\ell = 2$, $r_b = 30M$ boundary kernel evaluated along s = iy

<ロ> (四) (四) (三) (三)

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

 $\ell=2$, $r_1=30M$, $r_2=\infty$ extraction kernel along s=iy

Numerically compute $\widehat{\Phi}_2(s) = \exp\left[\int_{30M}^{\infty} \frac{\widehat{\Omega}_2(s,\eta)}{\eta} d\eta\right]$

Scott Field Fast waveform extraction from gravitational perturbations

	Introduction Theory: boundary and extraction kernels Practice: implementation with tables and results Final remarks	Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations		
Pole #	Gamma strengths	Beta locations		
1	-1.7576263057e-08 + 0i	-5.4146529341e-01 + 0i		
2	-6.4180514293e-08 + 0i	-4.1310954989e-01 + 0i		
3	-6.2732971050e-06 + 0i	-3.1911338482e-01 + 0i		
4	-6.9363117988e-05 + 0i	-2.4711219871e-01 + 0i		
5	-5.7180637750e-04 + 0i	-1.9108163722e-01 + 0i		
6	-2.7884247577e-03 + 0i	-1.4749601558e-01 + 0i		
7	-5.8836792033e-03 + 0i	-1.1366299945e-01 + 0i		
8	-3.6549136132e-03 + 0i	-8.6476935381e-02 + 0i		
9	-1.0498746767e-03 + 0i	-6.4512065175e-02 + 0i		
10	-2.4204781878e-04 + 0i	-4.7332374442e-02 + 0i		
11	-5.5724464176e-05 + 0i	-3.4115775484e-02 + 0i		
12	-1.2157296793e-05 + 0i	-2.4048935704e-02 + 0i		
13	-2.6651813247e-06 + 0i	-1.6468632919e-02 + 0i		
14	-4.8661708981e-07 + 0i	-1.0845690423e-02 + 0i		
15	-8.6183677612e-08 + 0i	-6.7552918597e-03 + 0i		
16	-9.3735071189e-09 + 0i	-3.8525630196e-03 + 0i		
17	-8.7881787023e-10 + 0i	-1.8481215040e-03 + 0i		
18	-9.1164536027e-02 -5.3953709155e-02	i -9.4779490815e-02 +5.9927979877e-02i		
19	-9.1164536027e-02 +5.3953709155e-02	i 9.4779490815e-02 -5.9927979877e-02i		
	For $s \in \mathrm{i}\mathbb{R}$, $\widehat{\Phi}_2(s) pprox \sum_{i=1}^{19} rac{\gamma_i}{s-eta_i}$	$\Phi ightarrow \Phi_2(t) pprox \sum_{i=1}^{19} \gamma_i \exp\left(eta_i t ight)$		

Scott Field Fast waveform extraction from gravitational perturbations

Flatspace: Problem setup Flatspace: Boundary and extraction kernels Kernels from rational approximation RWZ equations

Key features of extraction technique

- With a time-series at ANY radial location can EXACTLY extract signal to any other radial value
 - Exact for RWZ equation
- Extraction as a post-processing step on existing data
- Non-intrusive to existing code

- 4 回 ト 4 ヨト 4 ヨト

Implementation with tables Results: Teleportation Results: EMRIs

Outline

Introduction

Theory: boundary and extraction kernels

Practice: implementation with tables and results

Final remarks

ヘロン 人間 とくほど くほとう

2

Implementation with tables Results: Teleportation Results: EMRIs

Kernel tables

For someone wishing to use boundary and extraction kernels the previous part of the talk is largely irrelevant

- Kernels computed using MPI and quad precision
- Once a table has been generated very easy to use
- All kernels are (or will be) available online

www.dam.brown.edu/people/sfield/KernelsRWZ www.math.unm.edu/~lau/KernelsRWZ

< ロト < 同ト < ヨト < ヨト

Implementation with tables Results: Teleportation Results: EMRIs

Implementation: extraction of RW masterfunction

- Suppose we have evolved the RW equation, recording a (discrete) time-series Ψⁿ = Ψ(t_n, x_b) at the outer computational boundary
- Discrete times from the numerical scheme are $t^n = 0 + n\Delta t$
- From $\Psi(t_n, x_b)$ we want to compute $\Psi(t_n + \infty, x_b + \infty)$

$$\Psi(t+\infty,b+\infty)\simeq\sum_{q=1}^d\gamma_q\int_0^te^{eta_q(t-t')}\Psi(t',b)dt'+\Psi(t,b)$$

$$\Psi(t+\infty,b+\infty)\simeq\sum_{q=1}^d\gamma_q\int_0^te^{eta_q(t-t')}\Psi(t',b)dt'+\Psi(t,b)$$

1) Download and import a table

Pole # Alpha strengths

- 1 -6.2237645749568241E-008
- 2 -3.9539987058586121E-006

E-006 -1.5508374 18 More Entires Here

Beta locations -2.2294005169277857E-001 -1.5508374693643587E-001

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\Psi(t+\infty,b+\infty)\simeq\sum_{q=1}^d\gamma_q\int_0^te^{eta_q(t-t')}\Psi(t',b)dt'+\Psi(t,b)$$

1) Download and import a table

 Pole #
 Alpha strengths
 Beta locations

 1
 -6.2237645749568241E-008
 -2.2294005169277857E-001

 2
 -3.9539987058586121E-006
 -1.5508374693643587E-001

 18
 More Entires Here

2) Read these values into the code $(\alpha_1, \beta_1) = (-6.2237645749568241 \times 10^{-8}, -2.2294005169277857 \times 10^{-1}) / (2M)$ $(\alpha_2, \beta_2) = \dots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

$$\Psi(t+\infty,b+\infty)\simeq\sum_{q=1}^d\gamma_q\int_0^te^{eta_q(t-t')}\Psi(t',b)dt'+\Psi(t,b)$$

1) Download and import a table

2) Read these values into the code $(\alpha_1, \beta_1) = (-6.2237645749568241 \times 10^{-8}, -2.2294005169277857 \times 10^{-1}) / (2M)$ $(\alpha_2, \beta_2) = \dots$

3) Integrate a few ODEs (Forward Euler implementation)

For
$$q = 1$$
 to 20
 $(\Xi_q * \Psi)^{n+1} = (\Xi_q * \Psi)^n + \Delta t [\beta_q (\Xi_q * \Psi)^n + \Psi^n]$
EndFor
 $\Psi_{\infty}^{n+1} = \sum_{q=1}^{20} \gamma_q (\Xi_q * \Psi)^{n+1} + \Psi^{n+1}$

Implementation with tables Results: Teleportation Results: EMRIs

Teleportation: finite radius extraction

Experiment setup

- Finite boundary to finite boundary location (RW potential)
- "bump" function with support $-10M < r_* < 3M$
- Record Ψ(t, r₂) as a time-series at some location r₂
- Record $\Psi(t, r_1)$ as a time-series at some location $r_1 < r_2$
- Find $\Psi(t, r_2)$ by convolving $\Psi(t, r_1)$ with a teleportation kernel

Implementation with tables Results: Teleportation Results: EMRIs

Extraction $r_1 \rightarrow r_2 = 1160 M$

Scott Field

Errors for waveforms at various radii relative to waveform read-off at r = 1160M

Fast waveform extraction from gravitational perturbations

э

Implementation with tables Results: Teleportation Results: EMRIs

Test particle orbiting a Schwarzschild blackhole (Setup)

Orbital parameters					
e = 0.764124	<i>p</i> = 8.75455				

- Perturbations $h_{\mu\nu}$ determined by *master functions*: $\Psi_{\ell m}^{\text{ZM}}$ and $\Psi_{\ell m}^{\text{CPM}}$.
- Each obeys a forced wave equation:

$$\begin{aligned} -\partial_t^2 \Psi_{\ell m} &+ \partial_x^2 \Psi_{\ell m} - V_{\ell}(r) \Psi_{\ell m} \\ &= f(r) \big[G_{\ell m}(t,r) \delta(r-r_p(t)) + F_{\ell m}(t,r) \delta'(r-r_p(t)) \big]. \end{aligned}$$

- ► V_ℓ(r) either the Regge–Wheeler or Zerilli potential for which we construct boundary and extraction kernels
- Spectrally accurate time-domain discontinuous Galerkin code

Implementation with tables Results: Teleportation Results: EMRIs

Luminousity results from measurements at $r_b = 60M$

Compare with accurate frequency domain results S. Hopper and C. R. Evans, Phys. Rev. D82, 084010 (2010).

$$\begin{split} \dot{E}_{\ell m}^{\infty} &= \frac{1}{64\pi} \frac{(\ell+2)!}{(\ell-2)!} \left\langle |\dot{\Psi}_{\ell m}^{\rm Z}|^2 + |\dot{\Psi}_{\ell m}^{\rm RW}|^2 \right\rangle \\ \dot{L}_{\ell m}^{\infty} &= \frac{\mathrm{i}m}{64\pi} \frac{(\ell+2)!}{(\ell-2)!} \left\langle \dot{\Psi}_{\ell m}^{\rm Z} \bar{\Psi}_{\ell m}^{\rm Z} + \dot{\Psi}_{\ell m}^{\rm RW} \bar{\Psi}_{\ell m}^{\rm RW} \right\rangle \end{split}$$

т	Alg.	\dot{E}_{2m}^{∞}		Ĺ _{2m}	
0	FR	1.27486196317	$ imes 10^{-8}$	0	
	WE	1.27486196187	$ imes 10^{-8}$	0	
1	FR	1.15338054092	$ imes 10^{-6}$	1.44066000650	$ imes 10^{-5}$
	WE	1.15338054091	$ imes 10^{-6}$	1.44066000619	$ imes 10^{-5}$
2	FR	1.55967717209	$ imes 10^{-4}$	2.07778922470	$\times 10^{-3}$
	WE	1.55967717211	$ imes 10^{-4}$	2.07778922439	×10 ⁻³

Fast waveform extraction from gravitational perturbations

Scott Field

Outline

Introduction

- Theory: boundary and extraction kernels
- Practice: implementation with tables and results

Final remarks

・ロト ・同ト ・ヨト ・ヨト

2

Final remarks

- Theoretical development for flatspce case
- RWZ case treated similarly but relies more heavily on numerics
- Rational approximation provides for an accurate sum-of-poles representation
- While computing a kernel table is hard, implementing it takes a few minutes
- Extraction is an easy post-processing step (existing data, no changes to code)
- Extraction and boundary kernels are (will) be made available for variety of boundary locations and up to high l

(ロ) (同) (E) (E) (E)

QUESTIONS?

Scott Field Fast waveform extraction from gravitational perturbations

3