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Motivation

◮ Recover the asymptotic signal reaching future null infinity using only
knowledge of a signal recorded at an arbitrarily close location

◮ Theoretical and practical interest – gravitational waveform modeling

Approach

◮ Will show convolution with extraction kernels yields asymptotic signal

◮ Closely related to exact radiation boundary kernels
◮ On a spatially finite computational domain we require boundary conditions
◮ Will show extraction kernels are given as an integral over boundary kernels

Old area of study, some especially relevant techniques...

◮ Geometric approach using hyperboloidal-layers (Zenginoglu, Diener)

◮ Gravitational multipoles for general relativity linearized about flat
spacetime (Abrahams and Evans)
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3+1 wave equation

We wish to solve...

(−∂2t + ∂2x + ∂2y + ∂2z )ψ = 0
Problem posed on spatially unbounded
domain and with compactly supported
initial data.
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3+1 wave equation

We wish to solve...

(−∂2t + ∂2x + ∂2y + ∂2z )ψ = 0
Problem posed on spatially unbounded
domain and with compactly supported
initial data.

We actually solve...

◮ For computational reasons the problem is solved on a spatially finite
domain

◮ Outer computational boundary is a sphere located at r = rb

GOAL: mimic open space problem by i) supplying correct non-reflecting
boundary conditions and ii) recovering solution which escapes to infinity.
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4 step roadmap

Working in the Laplace frequency domain...

1. What are the outgoing solutions?

2. What are the outgoing boundary conditions?

3. What is asymptotic solution? (preview: related to boundary conditions)

4. Finally, inverse Laplace transform to get time-domain information.

Flatspace and RWZ wave equations follow similar approach. However, we may
carry out 4 steps analytically for flatspace, while relying more heavily on
numerical results for the RWZ equations.
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Laplace transformed wave equation

◮ Flatspace wave equation for spherical harmonic modes:

ψ =
∑

ℓm

1

r
Ψℓm(t, r)Yℓm(θ, φ) →

[
∂2

∂t2
−

∂2

∂r2
+
ℓ(ℓ+ 1)

r2

]
Ψℓm = 0
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Laplace transformed wave equation

◮ Flatspace wave equation for spherical harmonic modes:

ψ =
∑

ℓm

1

r
Ψℓm(t, r)Yℓm(θ, φ) →

[
∂2

∂t2
−

∂2

∂r2
+
ℓ(ℓ+ 1)

r2

]
Ψℓm = 0

◮ Laplace transformed solution Ψ̂ℓm(s, r) =
∫
∞

0 Ψℓm(t, r)e
−stdt solves

[
s2 −

∂2

∂r2
+
ℓ(ℓ+ 1)

r2

]
Ψ̂ℓm =

∂Ψℓm

∂t
(0, r) + sΨℓm(0, r)

This equation serves as starting point for our analysis
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Outgoing solutions

[
s2 −

∂2

∂r2
+
ℓ(ℓ+ 1)

r2

]
Ψ̂ℓ = 0

◮ Ordinary differential equation

◮ A modified Bessel equation –
solutions well studies

◮ General outgoing solution: Ψ̂ℓ(s, r) = a(s)sℓe−srWℓ(sr)

Where a(s) some known function encoding the initial data

◮ Key point: Kernels are built from Wℓ and its derivative

◮ Wℓ(sr) = (sr)−ℓ
∑ℓ

k=0 cℓk(sr)
k

◮ Coefficients cℓk known (e.g. Jackson)
◮ Example W2(sr) = (sr)−2

[
3 + 3sr + (sr)2

]
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Frequency domain boundary conditions for outgoing modes

◮ We supply 1 piece of information: (∂t + ∂r )Ψℓ = ???

◮ Compute s + ∂r for an outgoing solution Ψ̂ℓ(s, r) = a(s)sℓe−srWℓ(sr)

sΨ̂ℓ(s, r) + ∂r Ψ̂ℓ(s, r) =
1

r

[
sr
W ′

ℓ(sr)

Wℓ(sr)

]
Ψ̂ℓ(s, r)

=
1

r

[
ℓ∑

k=1

bℓ,k/r

s − bℓ,k/r

]
Ψ̂ℓ(s, r) ≡

1

r
Ω̂ℓ(s, r)Ψ̂ℓ(s, r)

◮ bℓ,k are zeros of Wℓ(bℓ,k) = 0

◮ Ω̂ℓ(s, r) is the boundary kernel – evidently a sum-of-poles
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Time domain boundary conditions for outgoing modes

Using well known properties of inverse Laplace transforms...

∂tΨℓ + ∂rΨℓ =
1
r

∫ t

0 Ωℓ(t − t ′, r)Ψℓ(t
′, r)dt ′

where Ωℓ(t, r) =
∑ℓ

k=1
bℓ,k
r

exp
(
bℓ,k t

r

)
.

Observations

◮ Exact outgoing boundary condition in time domain at any rb

◮ Numerical solution computed with boundary at rb and ∞ are identical
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Flatspace teleportation/extraction for outgoing modes

◮ Using knowledge of the outgoing solution Ψ̂ℓ(s, r) = a(s)sℓe−srWℓ(sr)
1

Ψ̂ℓ(s, r2) = e
s(r1−r2)

[
Wℓ(sr2)

Wℓ(sr1)

]
Ψ̂ℓ(s, r1) ≡ e

s(r1−r2)Φ̂ℓ(s, r1, r2)Ψ̂ℓ(s, r1)

◮ Φ̂ℓ(s, r1, r2) is the teleportation kernel

◮ When r2 = ∞, Φ̂ℓ(s, r1,∞) is the extraction kernel

1Disclaimer: must define Φ̂ℓ(s, r1, r2) = Wℓ(sr2)/Wℓ(sr1)− 1 so that Φ̂ℓ → 0 along path

of inverse Laplace transform. This amounts to offsetting by Ψ̂ℓ(s, r1)
Scott Field Fast waveform extraction from gravitational perturbations
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Connection with boundary kernels

Straightforward to show

Φ̂ℓ(s, r1, r2) =
Wℓ(sr2)

Wℓ(sr1)
= exp

[∫ r2

r1

Ω̂ℓ(s, η)

η
dη

]

Teleportation kernel is an integral over boundary kernels

◮ Φ̂ℓ(s, r1, r2) is numerically generated and NOT a sum of poles. How
should we invert to the time domain?
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Need for rational approximation

Propose that we can write

Φ̂ℓ(s, r1, r2) ≈
degree d − 1 polynomial

degree d polynomial
=

d∑

i=1

γi
s − βi

◮ Clearly rational approximation won’t be accurate for all s ∈ C

◮ In fact infinitely bad

◮ If rational approximation is accurate for only s ∈ iR we can analytically

perform the inversion!

◮ Carried out via a non-linear least squares fitting procedure. Details of this
“black box” unimportant: Approximation known and accurate

◮ Typical pointwise relative error of 10−12 achieved
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Schematic for practical extraction kernel generation

Used for for flatspace wave and RWZ equations

1. Working in the frequency domain, identify the boundary kernel Ω̂ℓ(s, r)
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Schematic for practical extraction kernel generation

Used for for flatspace wave and RWZ equations

1. Working in the frequency domain, identify the boundary kernel Ω̂ℓ(s, r)

2. Numerically integrate to generate the relevant teleportation/extraction

kernel Φ̂ℓ(s, r1, r2) = exp
[∫ r2

r1

Ω̂ℓ(s,η)
η

dη
]
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Schematic for practical extraction kernel generation

Used for for flatspace wave and RWZ equations

1. Working in the frequency domain, identify the boundary kernel Ω̂ℓ(s, r)

2. Numerically integrate to generate the relevant teleportation/extraction

kernel Φ̂ℓ(s, r1, r2) = exp
[∫ r2

r1

Ω̂ℓ(s,η)
η

dη
]

3. Evaluate this objects along inversion path s ∈ iR
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Schematic for practical extraction kernel generation

Used for for flatspace wave and RWZ equations

1. Working in the frequency domain, identify the boundary kernel Ω̂ℓ(s, r)

2. Numerically integrate to generate the relevant teleportation/extraction

kernel Φ̂ℓ(s, r1, r2) = exp
[∫ r2

r1

Ω̂ℓ(s,η)
η

dη
]

3. Evaluate this objects along inversion path s ∈ iR

4. Rational approximation to good agreement on s ∈ iR
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Schematic for practical extraction kernel generation

Used for for flatspace wave and RWZ equations

1. Working in the frequency domain, identify the boundary kernel Ω̂ℓ(s, r)

2. Numerically integrate to generate the relevant teleportation/extraction

kernel Φ̂ℓ(s, r1, r2) = exp
[∫ r2

r1

Ω̂ℓ(s,η)
η

dη
]

3. Evaluate this objects along inversion path s ∈ iR

4. Rational approximation to good agreement on s ∈ iR

5. Analytically perform an inverse Laplace transform using the rationally
approximated kernel

Scott Field Fast waveform extraction from gravitational perturbations
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Regge–Wheeler equation (Zerilli follows similar approach)

−∂2tΨℓm + ∂2xΨℓm −
f (r)

r2

[
ℓ(ℓ+ 1)−

6M

r

]
Ψℓm = 0

x = r + 2M log(12 r/M − 1) is tortoise coordinate and f (r) = 1− 2M/r

◮ One can find (and numerically integrate) an ODE in the Laplace
frequency domain for the RWZ boundary kernel (Lau 2004)
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ℓ = 2, rb = 30M boundary kernel evaluated along s = iy
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ℓ = 2, r1 = 30M , r2 = ∞ extraction kernel along s = iy

Numerically compute Φ̂2(s) = exp
[∫

∞

30M
Ω̂2(s,η)

η
dη

]
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Pole # Gamma strengths Beta locations

1 -1.7576263057e-08 + 0i -5.4146529341e-01 + 0i

2 -6.4180514293e-08 + 0i -4.1310954989e-01 + 0i

3 -6.2732971050e-06 + 0i -3.1911338482e-01 + 0i

4 -6.9363117988e-05 + 0i -2.4711219871e-01 + 0i

5 -5.7180637750e-04 + 0i -1.9108163722e-01 + 0i

6 -2.7884247577e-03 + 0i -1.4749601558e-01 + 0i

7 -5.8836792033e-03 + 0i -1.1366299945e-01 + 0i

8 -3.6549136132e-03 + 0i -8.6476935381e-02 + 0i

9 -1.0498746767e-03 + 0i -6.4512065175e-02 + 0i

10 -2.4204781878e-04 + 0i -4.7332374442e-02 + 0i

11 -5.5724464176e-05 + 0i -3.4115775484e-02 + 0i

12 -1.2157296793e-05 + 0i -2.4048935704e-02 + 0i

13 -2.6651813247e-06 + 0i -1.6468632919e-02 + 0i

14 -4.8661708981e-07 + 0i -1.0845690423e-02 + 0i

15 -8.6183677612e-08 + 0i -6.7552918597e-03 + 0i

16 -9.3735071189e-09 + 0i -3.8525630196e-03 + 0i

17 -8.7881787023e-10 + 0i -1.8481215040e-03 + 0i

18 -9.1164536027e-02 -5.3953709155e-02i -9.4779490815e-02 +5.9927979877e-02i

19 -9.1164536027e-02 +5.3953709155e-02i 9.4779490815e-02 -5.9927979877e-02i

For s ∈ iR, Φ̂2(s) ≈
∑19

i=1
γi

s−βi
→ Φ2(t) ≈

∑19
i=1 γi exp (βi t)

Scott Field Fast waveform extraction from gravitational perturbations
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Key features of extraction technique

◮ With a time-series at ANY radial location can EXACTLY extract signal to
any other radial value

◮ Exact for RWZ equation

◮ Extraction as a post-processing step on existing data

◮ Non-intrusive to existing code

Scott Field Fast waveform extraction from gravitational perturbations
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Kernel tables

For someone wishing to use boundary and extraction kernels the previous part
of the talk is largely irrelevant

◮ Kernels computed using MPI and quad precision

◮ Once a table has been generated very easy to use

◮ All kernels are (or will be) available online

www.dam.brown.edu/people/sfield/KernelsRWZ

www.math.unm.edu/~lau/KernelsRWZ

Scott Field Fast waveform extraction from gravitational perturbations
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Implementation: extraction of RW masterfunction

◮ Suppose we have evolved the RW equation, recording a (discrete)
time-series Ψn = Ψ(tn, xb) at the outer computational boundary

◮ Discrete times from the numerical scheme are tn = 0 + n∆t

◮ From Ψ(tn, xb) we want to compute Ψ(tn +∞, xb +∞)

Scott Field Fast waveform extraction from gravitational perturbations



Ψ(t +∞, b +∞) ≃

d∑

q=1

γq

∫ t

0
eβq(t−t′)Ψ(t ′, b)dt ′ +Ψ(t, b)



Ψ(t +∞, b +∞) ≃

d∑

q=1

γq

∫ t

0
eβq(t−t′)Ψ(t ′, b)dt ′ +Ψ(t, b)

1) Download and import a table

Pole # Alpha strengths Beta locations

1 -6.2237645749568241E-008 -2.2294005169277857E-001

2 -3.9539987058586121E-006 -1.5508374693643587E-001

18 More Entires Here



Ψ(t +∞, b +∞) ≃

d∑

q=1

γq

∫ t

0
eβq(t−t′)Ψ(t ′, b)dt ′ +Ψ(t, b)

1) Download and import a table

Pole # Alpha strengths Beta locations

1 -6.2237645749568241E-008 -2.2294005169277857E-001

2 -3.9539987058586121E-006 -1.5508374693643587E-001

18 More Entires Here

2) Read these values into the code
(α1, β1) =

(
−6.2237645749568241× 10−8,−2.2294005169277857× 10−1

)
/(2M)

(α2, β2) = . . .



Ψ(t +∞, b +∞) ≃

d∑

q=1

γq

∫ t

0
eβq(t−t′)Ψ(t ′, b)dt ′ +Ψ(t, b)

1) Download and import a table

Pole # Alpha strengths Beta locations

1 -6.2237645749568241E-008 -2.2294005169277857E-001

2 -3.9539987058586121E-006 -1.5508374693643587E-001

18 More Entires Here

2) Read these values into the code
(α1, β1) =

(
−6.2237645749568241× 10−8,−2.2294005169277857× 10−1

)
/(2M)

(α2, β2) = . . .

3) Integrate a few ODEs (Forward Euler implementation)

For q = 1 to 20
(Ξq ∗Ψ)n+1 = (Ξq ∗Ψ)n +∆t

[
βq(Ξq ∗Ψ)n +Ψn

]

EndFor

Ψn+1
∞

=
∑20

q=1 γq(Ξq ∗Ψ)n+1 +Ψn+1
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Teleportation: finite radius extraction

Experiment setup

◮ Finite boundary to finite boundary location (RW potential)

◮ “bump” function with support −10M < r∗ < 3M

◮ Record Ψ(t, r2) as a time-series at some location r2

◮ Record Ψ(t, r1) as a time-series at some location r1 < r2

◮ Find Ψ(t, r2) by convolving Ψ(t, r1) with a teleportation kernel

Scott Field Fast waveform extraction from gravitational perturbations
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Extraction r1 → r2 = 1160M

600 650 700 750 800 850 900 950 1000 1050

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Errors for waveforms at various radii relative to waveform read−off at r = 1160M

 

 

600 650 700 750 800 850 900 950 1000 1050

10
−20

10
−18

10
−16

10
−14

10
−12

Time t/(2M)

 

 

read−off 30M
read−off 60M
read−off 120M
read−off 240M

extracted 30M
extracted 60M
extracted 120M
extracted 240M
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Test particle orbiting a Schwarzschild blackhole (Setup)

Orbital parameters

e = 0.764124 p = 8.75455

◮ Perturbations hµν determined by master functions: ΨZM

ℓm and ΨCPM

ℓm .

◮ Each obeys a forced wave equation:

−∂2tΨℓm + ∂2xΨℓm − Vℓ(r)Ψℓm

= f (r)
[
Gℓm(t, r)δ(r − rp(t)) + Fℓm(t, r)δ

′(r − rp(t))
]
.

◮ Vℓ(r) either the Regge–Wheeler or Zerilli potential for which we construct
boundary and extraction kernels

◮ Spectrally accurate time-domain discontinuous Galerkin code

Scott Field Fast waveform extraction from gravitational perturbations



Introduction
Theory: boundary and extraction kernels

Practice: implementation with tables and results
Final remarks

Implementation with tables
Results: Teleportation
Results: EMRIs

Luminousity results from measurements at rb = 60M

Compare with accurate frequency domain results

S. Hopper and C. R. Evans, Phys. Rev. D82, 084010 (2010).

Ė∞

ℓm =
1

64π

(ℓ+ 2)!

(ℓ− 2)!

〈
|Ψ̇Z

ℓm|
2 + |Ψ̇RW

ℓm |2
〉

L̇∞
ℓm =

im

64π

(ℓ+ 2)!

(ℓ− 2)!

〈
Ψ̇Z

ℓmΨ̄
Z

ℓm + Ψ̇RW

ℓm Ψ̄RW

ℓm

〉

m Alg. Ė∞

2m L̇∞2m

0 FR 1.27486196317 ×10−8 0
WE 1.27486196187 ×10−8 0

1 FR 1.15338054092 ×10−6 1.44066000650 ×10−5

WE 1.15338054091 ×10−6 1.44066000619 ×10−5

2 FR 1.55967717209 ×10−4 2.07778922470 ×10−3

WE 1.55967717211 ×10−4 2.07778922439 ×10−3

Scott Field Fast waveform extraction from gravitational perturbations
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Final remarks

◮ Theoretical development for flatspce case

◮ RWZ case treated similarly but relies more heavily on numerics

◮ Rational approximation provides for an accurate sum-of-poles
representation

◮ While computing a kernel table is hard, implementing it takes a few
minutes

◮ Extraction is an easy post-processing step (existing data, no changes to
code)

◮ Extraction and boundary kernels are (will) be made available for variety of
boundary locations and up to high ℓ

Scott Field Fast waveform extraction from gravitational perturbations
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QUESTIONS?
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