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Beware of confusing mass conventions

SF PN/NR

mass of the “particle” µ m1

mass of the “black hole” M m2

total mass µ+ M ' M m = m1 + m2

reduced mass µM
µ+M ' µ µ = m1m2

m

symmetric mass ratio µM
(µ+M)2 ' µ

M ν = m1m2
m2

(asymmetric) mass ratio µ
M � 1 q = m1

m2

We shall use the PN/NR mass conventions
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Outline

À Gravitational waveforms

Á Periastron advance in black hole binaries

Â First law of binary black hole mechanics

Ã Binding energy and angular momentum
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Head-on collision of two black holes
[Smarr (1979); Detweiler (1979)]

m1 = m2

m1 ≪ m2 
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Numerical Relativity

Perturbation Theory

Rescaling m1 → µ, m2 → m
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Head-on collision for a mass ratio 1:100
[Sperhake, Cardoso et al. (2011)]
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Head-on collision for a mass ratio 1:10
[Sperhake, Cardoso et al. (2011)]
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Head-on collision for a mass ratio 1:4
[Sperhake, Cardoso et al. (2011)]
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Outline

À Gravitational waveforms

Á Periastron advance in black hole binaries

Â First law of binary black hole mechanics

Ã Binding energy and angular momentum
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Relativistic perihelion advance of Mercury

• Observed anomalous precession of
Mercury’s perihelion of ∼ 43”/cent.

• Accounted for by the leading-order
relativisic angular advance per orbit

∆ΦGR =
6πGM�

c2a (1− e2)

• One of the first successes of Einstein’s
general theory of relativity

• Relativisic periastron advance of ∼ ◦/yr
now measured in binary pulsars 

M⊙

Mercury
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Periastron advance in black hole binaries

• Conservative part of the dynamics only

• Generic non-circular orbit parametrized by
the two frequencies

Ωr =
2π

P
, Ωϕ =

1

P

∫ P

0
ϕ̇(t) dt

• Periastron advance per radial period

K ≡ Ωϕ

Ωr
= 1 +

∆Φ

2π

• In the circular orbit limit e → 0, the
relation K (Ωϕ) is coordinate invariant

m
2

m
1
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Early results in numerical relativity
[Mroué, Pfeiffer, Kidder & Teukolsky (2010)]
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Tentative comparison with self-force results
[Barack & Sago (2011)]
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Extensive comparison for a mass ratio 1:1
[Le Tiec, Mroué et al. (2011)]
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Extensive comparison for a mass ratio 1:8
[Le Tiec, Mroué et al. (2011)]
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Variation with respect to the mass ratio
[Le Tiec, Mroué et al. (2011)]
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Outline

À Gravitational waveforms

Á Periastron advance in black hole binaries

Â First law of binary black hole mechanics

Ã Binding energy and angular momentum
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Generalized first law of mechanics
[Friedman, Uryū & Shibata (2002)]

• Spacetimes with black holes + perfect fluid matter sources

• One-parameter family of solutions {gαβ(λ), uα(λ), ρ(λ), s(λ)}
• Globally defined Killing vector field Kα → conserved charge Q

δQ =
∑
i

κi
8π

δAi +

∫
Σ

[
h̄∆(dMb) + T̄∆(dS) + vα∆(dCα)

]

Σ

Mb,S,CαAκ

vα

h,T

uα

KαQ

t

x
y
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Application to compact binaries on circular orbits

• For circular orbits, the geometry has a helical Killing vector

Kα → (∂t)
α + Ω (∂ϕ)α (when r → +∞)

• For asymptotically flat spacetimes [Friedman et al. (2002)]

δQ = δM − Ω δJ

• In the exact theory, helically symmetric spacetimes are not
asymptotically flat [Gibbons & Stewart (1983); Klein (2004)]

• Asymptotic flatness can be recovered if gravitational radiation
can be “turned off”, e.g.

◦ Conformal Flatness Condition
◦ Post-Newtonian theory
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Application to compact binaries on circular orbits
[Le Tiec, Blanchet & Whiting (2012)]

• Conservative dynamics only → no gravitational radiation

• Non-spinning compact objects modeled as point masses mA:

Tαβ =
2∑

A=1

mA zA uαAu
β
A

δ(x− yA)√
−g

• For two point masses on a circular orbit, the first law becomes

δM − Ω δJ = z1 δm1 + z2 δm2

z2

m1

Ω

M,J

r  +¥  
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First integral associated with the variational law
[Le Tiec, Blanchet & Whiting (2012)]

• Variational first law: δM − Ω δJ = z1 δm1 + z2 δm2

• Since {M, J, zA} are all functions of {Ω,mA}, we have

∂M

∂Ω
= Ω

∂J

∂Ω
and zA =

∂(M − ΩJ)

∂mA

• After a few algebraic manipulations, we obtain

M − 2ΩJ = m1z1 + m2z2

• Alternative derivations based on:

◦ Euler’s theorem applied to the function M(J1/2,m1,m2)
◦ The combination MK − 2ΩJK of the Komar quantities

15th Capra Meeting — June 13, 2012 Slide 19/29



Gravitational waveforms Periastron advance First law of binary mechanics Energy and angular momentum

Outline

À Gravitational waveforms

Á Periastron advance in black hole binaries

Â First law of binary black hole mechanics

Ã Binding energy and angular momentum
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Binding energy beyond the test-mass approximation
[Le Tiec, Barausse & Buonanno (2012)]

• The binding energy E ≡ M −m is a function of x ≡ (mΩ)2/3

• In the “small” mass ratio limit ν → 0:

z1 =
√

1− 3x + ν zGSF(x) +O(ν2)

E

µ
=

(
1− 2x√
1− 3x

− 1

)
+ ν EGSF(x) +O(ν2)

• The self-force contribution zGSF(x) is known numerically
[Detweiler (2008); Sago, Barack & Detweiler (2008); Shah et al. (2011)]

• The first law provides a relationship E ↔ z1, which implies

EGSF(x) =
1

2
zGSF(x)− x

3
z ′GSF(x) + f (x)
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GSF correction to the Schwarzschild ISCO frequency

• The orbital frequency of the Schwarzschild ISCO is shifted
under the effect of the conservative self-force:

mΩISCO = 6−3/2︸ ︷︷ ︸
Schwarz.

result

{
1 + ν CΩ︸︷︷︸

conservative
GSF effect

+ O(ν2)

}

• A stability analysis of slightly
eccentric orbits near the ISCO
yields [Barack & Sago (2009)]

CBS
Ω = 1.2512(4)

• Strong-field benchmark used for
comparison with PN/NR/EOB

m
2

m
1

ISCO

no stable circular orbit
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GSF correction to the Schwarzschild ISCO frequency

• The angular frequency of the minimum energy circular orbit
(MECO) is solution of

∂E

∂Ω

∣∣∣
ΩMECO

= 0

• Hamiltonian system: ISCO ⇔ MECO [Buonanno et al. (2003)]

• Our result for the energy EGSF(x) yields [Le Tiec et al. (2012)]

CΩ =
1

2
+

1

4
√

2

{
1

3
z ′′GSF(1/6)− z ′GSF(1/6)

}
• Using accurate numerical self-force data for zGSF(x), we find

CΩ = 1.2510(2)
[
CBS

Ω = 1.2512(4)
]
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NR/EOB comparison for an equal mass binary
[Damour, Nagar, Pollney & Reisswig (2012)]
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NR/GSF comparison for an equal mass binary
[Le Tiec, Barausse & Buonanno (2012)]
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Why do the GSFν results perform so well?

• In perturbation theory, one traditionally expands as

GSFq:
nmax∑
n=0

An(m2Ω) qn where q ≡ m1/m2 ∈ [0, 1]

• However, the relations K (Ω;mA), E (Ω;mA), and J(Ω;mA)
must be symmetric under exchange m1 ←→ m2

• Hence, a better-motivated expansion is

GSFν:
nmax∑
n=0

Bn(mΩ) νn where ν ≡ m1m2/m
2 ∈ [0, 1/4]

• In a PN expansion, we have Bn = O
(
1/c2n

)
= nPN + · · ·
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Perturbation theory for comparable mass binaries
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How about spins?

• Calculation of zGSF(Ω; S) for a particle on a circular equatorial
orbit in a Kerr background [Shah, Friedman & Keidl (in progress)]

• Generalization of the first law to spinning point particles
[Blanchet, Buonanno & Le Tiec (in progress)]

δM − Ω δL =
2∑

A=1

(zA δmA + ΩA δSA)

• Exact spin effects at linear order in ν in binding energy E and
total angular momentum J

• Shift of the Kerr ISCO under the effect of the conservative SF

• Spin-orbit and spin-spin contributions to EOB potentials
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How about orbital evolution?

• Consider a binary on a quasicircular orbit with frequency Ω(t)

• Binding energy E [Ω(t)] known to O(ν) [Le Tiec et al. (2012)]

• Compute the second order metric perturbation at I +:

O(ν) corrections in h+[Ω(t)], h×[Ω(t)],F [Ω(t)]

• Apply energy balance in the adiabatic approximation:

dE

dt
= F =⇒ Ω(t) accurate to O(ν)

• The resulting templates should model the adiabatic inspiral
and GW emission from EMRIs and IMRIs accurately
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Summary and prospects

• Combined with the first law of mechanics, the redshift z1(Ω)
provides crutial information about the orbital dynamics

• The GSF results with q → ν compare remarkably well to the
NR results, even for binaries with m1 ' m2

• Perturbation theory may be helpful to model the GW emission
from IMRIs, or even binaries with comparable masses

• Some directions for future research include:

◦ Extending the first law to spinning point particles

◦ Adiabatic waveforms using energy balance at relative O(ν)

◦ Redshift at second order → O(ν2) corrections in E (Ω), J(Ω)

◦ Non-quasicircular orbits?
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from IMRIs, or even binaries with comparable masses

• Some directions for future research include:

◦ Extending the first law to spinning point particles

◦ Adiabatic waveforms using energy balance at relative O(ν)

◦ Redshift at second order → O(ν2) corrections in E (Ω), J(Ω)

◦ Non-quasicircular orbits?
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