Progress on orbiting particles in a Kerr background

John Friedman

Capra 15

Abhay Shah, Toby Keidl
I. Intro
II. Summary of EMRI results in a Kerr spacetime
A. Dissipative ("adiabatic") approximation (only dissipative part of self-force used)
B. Full self force for scalar particle
C. Point-mass in circular orbit
III. Review of method computing self-force for Kerr in a radiation gauge
A. Mode-sum renormalization
B. $\Delta \Omega, \Delta \mathrm{u}^{\mathrm{t}}$ for circular orbit
C. Self-force (not yet completed)
I. Intro

The departure from geodesic motion to order m / M has two parts:

Dissipative part associated with the loss of energy to gravitational waves,
oddunder ingoing \longleftrightarrow outgoing
Conservative part
even under ingoing \longleftrightarrow outgoing

The dissipative part of self force plays the dominant role and is much easier to handle:

The part of the field odd under ingoing \longleftrightarrow outgoing is $1 / 2\left(h_{\text {retarded }}-h_{\text {advanced }}\right)$.

Because $h_{\text {retarded }}$ and $h_{\text {advanced }}$ have the same source, the odd combination is sourcefree and regular at the particle.

The conservative part of the force, is computed from

$$
1 / 2\left(h_{\text {retarded }}+h_{\text {advanced }}\right)
$$

a field singular at the particle. One must renormalize the field.
II. Summary of EMRI results in a Kerr spacetime
A. Dissipative ("adiabatic") approximation: only dissipative part of self-force used

Method and discussion:
Mino '05,
Drasco, Flanagan, Hughes '05,
Pound, Poisson, Nickel '05
Hinderer, Flanagan '08
Point-mass computations with only dissipative part of self force are well in hand:
Kennefick, Ori '06
Drasco, Flanagan, Hughes, Franklin 05, 06 Ganz, Hikida, Nakano, Sago, Tanaka 06, 07
Burko, Khanna 07
Mino 08...
Review: T. Tanaka, Prog. Theor. Phys. Suppl. 163, 120 (2006) [arXiv:grqc/0508114].

Sundararajan, Khanna, Hughes, Drasco '08

Orbit constructed as set of short geodesics:
Using black hole perturbation theory compute the evolution of three constants of geodesic motion, $E(t), L_{z}(t)$, and $Q(t)$.
Choose initial conditions and find the inspiral trajectory $[r(t), \theta(t), \phi(t)]$.
From this trajectory, find EMRI waveform.
http://gmunu.mit.edu/viz/emri_viz/emri_viz.html

Drasco movie: orbit with $a / M=0.9, \quad$ initial eccentricity $=0.7$, inclined at 60° to equatorial plane

Sundararajan, Khanna, Hughes, Drasco '08

Orbit constructed as set of short geodesics:
Using black hole perturbation theory compute the evolution of three constants of geodesic motion, $E(t), L_{z}(t)$, and $Q(t)$.
Choose initial conditions and find the inspiral trajectory $[r(t), \theta(t), \phi(t)]$.
From this trajectory, find EMRI waveform.
http://gmunu.mit.edu/viz/emri_viz/emri_viz.html

Drasco movie: orbit with $\mathrm{a} / \mathrm{M}=0.9, \quad$ initial eccentricity $=0.7$, inclined at 60° to equatorial plane
B. Full self-force for scalar particles

Computations in Kerr background that include conservative part of self-force for a particle with scalar charge:

Static Ottewill, Taylor '12

Circular orbits Warburton, Barack'10 (frequency-domain)

$$
\begin{aligned}
& \text { Dolan, Barack, Wardell '11 } \\
& \text { (time-domain) }
\end{aligned}
$$

Eccentric orbits Warburton, Barack '11 (frequency-domain)
C. Massive particles in circular orbit

Perturbed metric renormalized, quantities $\Delta \Omega$ and Δu^{t}, invariant under helically symmetric gauge transformations computed.

Shah, JF, Keidl
Dolan
Self-force in progress . . .
III. Review of method computing self-force for Kerr in a radiation gauge

A single complex Weyl scalar, either ψ_{0} or ψ_{4}, determines gravitational perturbations of a Kerr geometry (outside perturbative matter sources) up to changes in mass, angular momentum, and change in the center of mass.
ψ_{0} and ψ_{4} are each a component of the perturbed Weyl tensor along a tetrad associated with the two principal null directions of the spacetime. Each satisfies a separable wave equation, the Teukolsky equation for that component.

Newman-Penrose Formalism

Null tetrad $\quad I^{\alpha}, n^{\alpha}, m^{\alpha}, \bar{m}^{\alpha}$

e.g.,Kinnersley tetrad for Schwarzschild

$$
\begin{array}{ll}
I^{\alpha}=\frac{r^{2}}{\Delta} t^{\alpha}+r^{\alpha} & n^{\alpha}=\frac{1}{2}\left(t^{\alpha}-\frac{\Delta}{r^{2}} r^{\alpha}\right) \\
m^{\alpha}=\frac{1}{\sqrt{2}}\left(\hat{\theta}^{\alpha}+i \hat{\phi}^{\alpha}\right) & \bar{m}^{\alpha}=\frac{1}{\sqrt{2}}\left(\hat{\theta}^{\alpha}-i \hat{\phi}^{\alpha}\right)
\end{array}
$$

$$
\Delta=r^{2}-2 M r
$$

$$
\psi_{0}=-\delta C_{\alpha \beta \gamma \delta} I^{\alpha} m^{\beta} I^{\gamma} m^{\delta} \quad \psi_{4}=-\delta C_{\alpha \beta \gamma \delta} n^{\alpha} \bar{m}^{\beta} n^{\gamma} \bar{m}^{\delta}
$$

Teukolsky equation: $\mathcal{O}_{s} \psi=S$

$$
\begin{aligned}
& \mathcal{U}_{s}= {\left[\frac{\left(r^{2}+a^{2}\right)^{2}}{\Delta}-a^{2} \sin ^{2} \theta\right] \frac{\partial^{2}}{\partial t^{2}}-2 s\left[\frac{M\left(r^{2}-a^{2}\right)}{\Delta}-r-i a \cos \theta\right] \frac{\partial}{\partial t}+\frac{4 M a r}{\Delta} \frac{\partial^{2}}{\partial t \partial \phi}-\Delta^{-s} \frac{\partial}{\partial r}\left(\Delta^{s+1} \frac{\partial}{\partial r}\right) } \\
&-\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)-2 s\left[\frac{a(r-M)}{\Delta}+\frac{i \cos \theta}{\sin ^{2} \theta}\right] \frac{\partial}{\partial \phi} \\
&+\left[\frac{a^{2}}{\Delta}-\frac{1}{\sin ^{2} \theta}\right] \frac{\partial^{2}}{\partial \phi^{2}}+\left(s^{2} \cot ^{2} \theta-s\right) \\
& 2^{\text {nd }}-\text { order differential operator }
\end{aligned}
$$

Source function $S=\mathscr{J}^{\alpha \beta} T_{\alpha \beta}$,

Solution:

ψ_{0} is a sum over angular and time harmonics of the form

$$
\psi_{0 \ell m \omega}={ }_{2} R_{\ell m \omega}(r) \underbrace{}_{\begin{array}{l}
\text { spin-weighted } \\
\text { spheroidal harmonic }
\end{array}}
$$

ψ_{0} involves 2 derivatives of the metric perturbation $h_{\alpha \beta}$
To recover the metric from ψ_{0} involves 2 net integrations. The method is due to Chrzanowski and Cohen \& Kegeles, with a clear and concise derivation by Wald.

First integrate 4 times to obtain a potential Ψ, the Hertz potential.

Then take two derivatives of Ψ to find $h_{\alpha \beta}$
The resulting metric is in a radiation gauge.

- Outgoing Radiation Gauge (ORG)

$$
h_{\alpha \beta} n^{\beta}=0 \quad h=0
$$

5 constraints, similar to those for ingoing waves in flat space with a transverse-tracefree gauge. The metric perturbation satisfying these conditions is given by

$$
h_{\alpha \beta}=L_{\alpha \beta} \Psi
$$

where $L_{\alpha \beta}$ is a $2^{\text {nd }}$-order differential operator involving only $ð$ (angular derivative operator) and ∂_{t}

Weyl scalar ψ_{0}

Hertz potential Ψ

metric perturbation $h_{\alpha \beta}$ and expression for self-force a_{α}

$$
\downarrow
$$

renormalization coefficients

$$
\downarrow
$$

renormalized a_{α} (radiative part)

Weyl scalar ψ_{0}
Compute $\psi_{0}^{\text {ret }}$ from the Teukolsky equation as a mode sum over l, m, ω.

Weyl scalar ψ_{0}

Hertz potential Ψ
For vacuum:
Find the Hertz potential $\Psi^{\text {ret }}$ from $\psi_{0}^{\text {ret }}$ or $\psi_{4}^{\text {ret }}$ either algebraically from angular equation or as a 4 radial integrals from the radial equation.

The angular harmonics of $\psi_{0}^{\text {ret }}$ and $\psi_{4}^{\text {ret }}$ are defined for $r>r_{0}$ or $r<r_{0}$, with r_{0} the radial coordinate of the particle.

Explicitly,

$$
\frac{1}{8}\left[\left(ð-i a \sin \theta \partial_{t}\right)^{4} \bar{\Psi}+12 M \partial_{t} \Psi\right]=\psi_{0}
$$

Integrate 4 times with respect to θ

Algebraic solution for vacuum, valid for circular orbit: For each frequency and angular harmonic

$$
\Psi_{\ell m \omega}=8 \frac{(-1)^{m} D \bar{\psi}_{0 \ell-m-\omega}+12 i M \omega \psi_{0 \ell m \omega}}{D^{2}+144 M^{2} \omega^{2}}
$$

Equivalent alternative involves radial derivatives along principal null geodesics:

$$
\psi_{0}=\left(I^{\mu} \partial_{\mu}\right)^{4} \Psi=\partial_{r}^{4} \Psi(u, r, \theta, \widetilde{\phi})
$$

For each angular harmonic of ψ_{0}, this gives a unique solution satisfying the Teukolsky equation: e.g., for $r>r_{0}$,

$$
\begin{aligned}
& \psi_{0}=\left(\rho^{\mu} \partial_{\mu}\right)^{4} \Psi=\partial_{r}^{4} \Psi(u, r, \theta, \widetilde{\phi}) \\
& \Psi=\int_{r}^{\infty} d r_{1} \int_{r_{1}}^{\infty} d r_{2} \int_{r_{2}}^{\infty} d r_{3} \int_{r_{3}}^{\infty} d r_{4} \psi_{0}\left(u, r_{4}, \theta, \widetilde{\phi}\right) .
\end{aligned}
$$

(Kerrcoordinates: $\left.\tilde{\phi}=\phi+\int_{r}^{\infty} \frac{d r}{\Delta}\right)$

When the orbit is not circular, one cannot use the algebraic method to find Ψ near the particle. Inside the spherical shell between $r_{\text {min }}$ and $r_{\text {max }}, \psi_{0 l m \omega}$ has a nonzero source and the vacuum algebraic relation fails:

Radial integration commutes with decomposition into spherical harmonics: Can use $\Psi_{I m \omega}$ near the particle if computed by radial integration:

$$
\Psi_{l m \omega}=\int_{r}^{\infty} d r_{1} \int_{r_{1}}^{\infty} d r_{2} \int_{r_{2}}^{\infty} d r_{3} \int_{r_{3}}^{\infty} d r_{4} \psi_{0 l m \omega}
$$

$$
\begin{aligned}
\psi & =\sum \psi_{0 l m \omega} \Rightarrow \\
\Psi & =\sum \Psi_{l m \omega}
\end{aligned}
$$

Weyl scalar ψ_{0}

Hertz potential Ψ

metric perturbation $h_{\alpha \beta}$ and
expression for self-force a_{α}
Find, in a radiation gauge, the components of $h_{\alpha \beta}^{\text {ret }}$ and its derivatives that occur in the expression for a^{α} by taking derivatives of $\Psi^{\text {ret }}$.
e.g.:

$$
h_{\alpha \beta} m^{\alpha} m^{\beta} \propto(n \cdot \partial+\Gamma)(n \cdot \partial+\Gamma) \Psi
$$

Weyl scalar ψ_{0}

Hertz potential Ψ

\downarrow

metric perturbation $h_{\alpha \beta}$ and expression for self-force a_{α} renormalization coefficients

renormalization coefficients

Compute $a_{\ell}^{\text {reta }}$ from the perturbed geodesic equation as a mode sum truncated at $\ell_{\text {max }}$. Compute the renormalization vectors A^{a} and B^{a} (and C^{a} ?), numerically matching a power series in to the values of $a_{\ell}^{\text {reta } \alpha . ~(S h a h ~ e t ~ a l) ~}$

Weyl scalar ψ_{0}

Hertz potential Ψ

metric perturbation $h_{\alpha \beta}$ and expression for self-force a_{α}

$$
\downarrow
$$

renormalization coefficients

$$
\downarrow
$$

renormalized a_{α} (radiative part)

renormalized a_{α} (radiative part)

Subtract singular part of expression mode-by-mode

$$
\begin{aligned}
& a_{\ell}^{\mathrm{ren} \alpha}=a_{\ell}^{\mathrm{ret} \alpha}-\left(A^{\alpha} L+B^{\alpha}+\frac{C^{\alpha}}{L}\right) \\
& a^{\mathrm{ren} \alpha}=\lim _{\ell_{\max } \rightarrow \infty} \sum_{\ell=0}^{\ell_{\max }} a_{\ell}^{\mathrm{ren} \alpha}
\end{aligned}
$$

Shah uses $I_{\text {max }}=75$

The missing pieces

ψ_{0} and ψ_{4} do not determine the full perturbation: Spin-weight 0 and 1 pieces undetermined.

There are algebraically special perturbations of Kerr, perturbations for which ψ_{0} and ψ_{4} vanish: changing mass δm
changing angular momentum δJ
(and singular perturbations -
to C-metric and to Kerr-NUT).

And gauge transformations
$h_{\alpha \beta}^{\text {ret }}\left[\psi_{0}\right] \quad$ via CCK procedure
$h_{\alpha \beta}^{\mathrm{ret}}[\delta m]$
from the conserved current associated with the background Killing vector t^{α}.
$h_{\alpha \beta}^{\mathrm{ret}}[\delta J]$
from the conserved current associated with the background Killing vector ϕ^{α}, for the part of δJ along background J.
(L. Price)

$h_{\alpha \beta}[\delta m], \quad h_{\alpha \beta}[\delta J]$

$$
\begin{aligned}
& j_{(t)}{ }^{\alpha}=\delta\left(2 T^{\alpha}{ }_{\beta}-\delta_{\beta}^{\alpha} T\right) t^{\beta} \quad j_{(\phi)}{ }^{\alpha}=-\delta T^{\alpha}{ }_{\beta} \phi^{\beta} \\
& \text { Background } T^{\alpha}{ }_{\beta}=0 \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{\alpha} j_{(t)}{ }^{\alpha}=0, \quad \nabla_{\alpha} j_{(\phi)}{ }^{\alpha} & =0 \\
\delta m=\int j_{(t)}{ }^{\alpha} d S_{\alpha} \quad \delta J & =-\int j_{(\phi)}{ }^{\alpha} d S_{\alpha} \\
=m\left(2 u^{\alpha} \nabla_{\alpha} t-\frac{1}{u_{\alpha} t^{\alpha}}\right) & =-m u_{\alpha} \phi^{\alpha}
\end{aligned}
$$

This is enough to compute the self-force-induced change in two related quantities, a change invariant under gauge transformations generated by helically symmetric gauge vectors:
$\Delta U=\Delta u^{t}$ at fixed Ω
$\Delta \Omega\left(\right.$ at fixed $\left.u^{t}\right)$
Each computable in terms of $h^{\text {ren }}{ }_{\alpha \beta} u^{\alpha} u^{\beta}$

$\Delta \Omega$ for circular orbits in a Kerr background

$a<0$ counter-rotating a>0 corotating

r_{0} / M	$a=-0.9 M$	$a=-0.7 M$	$a=-0.5 M$	$a=0.0 M$	$a=0.5 M$	$a=0.7 M$	$a=0.9 M$
4	-	-	-	-	-	0.049494757	0.047064792
5	-	-	-	-	0.045714221	0.044118589	0.043175673
6	-	-	-	0.042727891	0.039444628	0.038657945	0.038163269
7	-	-	-0.032654832	0.031046361	0.034230599	0.033772187	0.033467250
8	-	-	-0.02912954	0.029617108	0.029410780		
10	-0.025452677	-0.025047514	-0.024678134	0.023913779	0.023380440	0.023232381	0.023121616
15	-0.014748048	-0.014648207	-0.014556074	0.014359915	0.014213208	0.014168481	0.014131741
20	-0.0099345954	-0.0098961562	-0.0098603936	0.0097828022	0.0097222383	0.0097028068	0.0096861192
30	-0.0055402445	-0.0056086307	-0.0055989040	0.0055772872	0.0055595452	0.0055535368	0.0055481511
50	-0.0026950345	-0.0026929863	-0.0026910361	0.0026865907	0.0026827611	0.0026814019	0.0026801414
70	-0.0016493214	-0.0016486061	-0.0016479203	0.0016463355	0.0016449360	0.0016444281	0.0016439500
100	-0.00097594981	-0.00097571320	-0.00097548493	0.00097495060	0.00097446889	0.00097429076	0.00097412099

TABLE IV: This table presents the numerical values of $\Delta \Omega$ for different values of r_{0} / M and a.
ΔU for circular orbits in a Kerr background $a<0$ counter-rotating $a>0$ corotating

$$
r_{0} / M
$$

ΔU

Comparisons underway with Alexandre Le Tiec (PN) and Sam Dolan (time-domain calculation).

To find the self-force itself, one needs two final pieces:
the part of δJ orthogonal to the background J
$h_{a \beta}^{\text {ref }}[C M]$
the change in the center of mass
Each is pure gauge outside the source, but the gauge transformation is discontinuous across the source.

2^{0}
 $h_{\alpha \beta}\left[\delta J_{\perp}\right], \quad h_{\alpha \beta}[C M]$

If they are pure gauge, how can they have a source?
$h_{\alpha \beta}^{g}=£_{\xi} g_{\alpha \beta} \Theta\left(r-r_{0}\right)$ is not pure gauge at $r=r_{0}$

$$
\left(h_{\alpha \beta}^{g}=£_{\xi \Theta\left(r-r_{0}\right)} g_{\alpha \beta}\right. \text { is pure gauge) }
$$

For Schwarzschild these are $l=1$ perturbations, with axial and polar parity, respectively.

How do we identify them in Kerr?

The idea is to find the part of the source that has not contributed to $h_{\alpha \beta}^{\mathrm{ret}}[\psi]+h_{\alpha \beta}[\delta m]+h_{\alpha \beta}[\delta J]$

One could in principle simply subtract from $\delta T^{\alpha \beta}$ the contribution from these three
terms. Writing

$$
\mathscr{E} h_{\alpha \beta}:=\delta G_{\alpha \beta}
$$

we have
$\mathscr{E} h^{\mathrm{ret}}{ }_{\alpha \beta}=8 \pi \delta \mathrm{~T}_{\alpha \beta}$,
$8 \pi \delta T_{\alpha \beta}^{\mathrm{remaining}}=8 \pi \delta \mathrm{~T}_{\alpha \beta}-\mathscr{E}\left(h^{\mathrm{ret}}[\psi]+h[\delta m]+h[\delta J]\right)_{\alpha \beta}$
Find ξ at r_{0} from the jump condition

$$
\int_{r_{0}-\varepsilon}^{r_{0}+\varepsilon}\left(\mathscr{E} h^{\text {gauge }}\right)_{\alpha \beta}=\int_{r_{0}-\varepsilon}^{r_{0}+\varepsilon} 8 \pi \delta T_{\alpha \beta}^{\text {remaining }}
$$

For $h^{\text {gauge }}$ continuous, the jump in $\mathscr{E} h^{\text {gauge }}$ involves only the few terms in \mathscr{E} with second derivatives in the radial direction orthogonal to u^{α}.

But

Now we're back to the old difficulty of handling terms that are singular at the particle.

Instead of trying directly to evaluate

$$
8 \pi \delta T_{\alpha \beta}-\mathscr{E}\left(h^{\mathrm{ret}}[\psi]+h[\delta m]+h[\delta J]\right)_{\alpha \beta}
$$

use the fact that $h^{\text {sing }}$ has source $\delta T_{\alpha \beta}$:

- Future problems: Key problems involving conservative part of self-force are not yet done

- Self-force on particle in circular orbit in Kerr (underway in modified radiation gauge and Lorenz gauge) and orbital evolution.
- Self-force on particle in generic orbit in Kerr and orbital evolutions.
- Identify and include relevant $2^{\text {nd }}-$ order corrections. Include particle spin (some calculations already done).
- In our (Abhay Shah's) mode-sum computation, form of singular field agrees with Lorenz. Why? (What happens to a logarithmic divergence of the gauge vector at the position of the particle?)
- Analytically find renormalization coeffs in radiation gauge.

