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Intro Extended body Limits Motion Field

Motivation

Extreme-mass-ratio inspirals

solar-mass neutron star or black hole orbits supermassive black hole

m emits gravitational radiation, loses energy, spirals into M

waveforms carry information about strong-field dynamics and
structure of spacetime near black hole

need to model motion of small body
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Intro Extended body Limits Motion Field

Point particle picture

Linearized theory

treat m as point particle in
background gµν

⇒ Tµν(1) =
∫
γ
muµuν δ

4(xρ−zρ(τ))√
−g dτ

linearized EFE δGµν [h
(1)
ρσ ] = 8πTµν(1)

⇒ h
(1)
µν = m

∫
γ
Gµνµ′ν′uµ

′
uν

′
dτ

Tails
perturbation propagates within
light cone

also, caustics develop—light
“cone” intersects itself
⇒ h

(1)
µν depends on entire past

history of γ
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Geodesic motion in an effective metric

MiSaTaQuWa (Mino,Sasaki,Tanaka, & Quinn,Wald) equation

nonlocal tail acts as potential, exerts force Fµ ∼ m∇µtail

tail isn’t nice: non-differentiable, not a solution to a field equation

Detweiler-Whiting decomposition

local field near particle split into two: h
(1)
µν = h

S(1)
µν + h

R(1)
µν

h
S(1)
µν ∼ m

r +O(r0); local bound field of particle

h
R(1)
µν ∼ tail + local terms; smooth solution to source-free EFE

motion is geodesic in effective metric gµν + h
R(1)
µν
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Outline

1 Introduction

2 Motion of a small extended body

3 Point particle limits & matched asymptotic expansions

4 Equation of motion

5 Finding the global field

Adam Pound Self-force: foundations and formalism



Intro Extended body Limits Motion Field

Outline

1 Introduction

2 Motion of a small extended body

3 Point particle limits & matched asymptotic expansions

4 Equation of motion

5 Finding the global field

Adam Pound Self-force: foundations and formalism



Intro Extended body Limits Motion Field

A small extended body moving through spacetime

Fundamental question

how does a body’s gravitational field affect its own motion?

Regime: small body

examine spacetime
(M, gµν) containing
body of mass m and
external lengthscales R
seek representation of
body’s motion when its
mass and size are � R
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Non-perturbative approach [Harte ’11]

Momentum
assume the body is material, not
a black hole

give body stress-energy Tµν

define momentum P ∼
∫
body

Tµν

Motion

choose representative worldline γ with coordinates zµ(τ) inside body

relate uµ = dzµ

dτ to P

⇒ DP
dτ determines acceleration of γ
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Motion of a test body in an effective metric

Non-perturbative decomposition

split metric into “self-field” generated by body and slowly varying
remainder

Equation of motion

define multipole moments I ∼
∫
body

Tµν

body moves as test body in effective metric gµν + hRµν :
motion is geodesic except for coupling of multipole moments to
curvature of effective metric
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Intro Extended body Limits Motion Field

However...

Material body

integrals over body’s interior preclude description of black hole

Field
describing motion in terms of metric isn’t sufficient: we need a
means of solving the EFE to obtain the metric (and isolating the
piece of it that determines the motion)
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Intro Extended body Limits Motion Field

Perturbation theory

treat body as source of perturbation of external background
spacetime (ME , gµν):

gµν = gµν + εh(1)µν + ε2h(2)µν + . . .

ε counts powers of m

assume body is compact, so as m→ 0, linear size → 0 at same rate

seek representation of motion in (ME , gµν)
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Approach I [Gralla & Wald ’08]: power series

Expansion of EFE

expand metric in Taylor series:

gµν(x, ε) = gµν(x) + εh(1)µν (x) + ε2h(2)µν (x) + . . .

solve EFE order by order outside body:

δGµν [h(1)] = 0

δGµν [h(2)] = −δ2Gµν [h(1)]

...

motion determined by Bianchi identity
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Intro Extended body Limits Motion Field

Representation of motion in power series

Expanded worldline

worldline γ0
identified as remnant
of body left at ε = 0

γ0 is geodesic

corrections
accounted for by
deviation vector δγ

Problem
as body drifts away from γ0, δγ grows large

representation of motion only meaningful and accurate for short time
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Intro Extended body Limits Motion Field

Approach II [Pound ’10]: self-consistent expansion

Expansion of EFE

allow γ to depend on ε and assume expansion of form

gµν(x, ε) = gµν(x) + hµν(x; γε)

= gµν(x) + εh(1)µν (x; γε) + ε2h(2)µν (x; γε) + . . .

need a method of systematically solving for each h
(n)
µν

⇒ impose Lorenz gauge (or other wave gauge) on the total
perturbation: ∇µh̄µν = 0

δGµν becomes a wave operator and EFE outside body becomes
weakly nonlinear wave equation:

�h̄µν + 2Rµ
ρ
ν
σh̄ρσ = 2δ2Gµν [h] + . . .

can be split into wave equations for each subsequent h
(n)
µν [γ] and

exactly solved for arbitrary γ

gauge condition will then constrain γ
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How to determine motion? Buffer region

define buffer region by
m� r � R
because m� r, can treat
mass as small perturbation
of external background

because r � R, can use
information about small
body
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Matched asymptotic expansions: inner expansion

Zoom in on body

use scaled coords r̃ ∼ r/ε to keep size of body fixed, send other
distances to infinity as ε→ 0

unperturbed body defines background spacetime gIµν in inner
expansion

buffer region at asymptotic infinity r � m
⇒ can define multipole moments without integrals over body
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Intro Extended body Limits Motion Field

Representation of motion in self-consistent approximation

Enforce a relationship between the expansions

...to define a worldline for all time, even for black hole

in buffer region, write metric in
coordinates centered on γ

make body at “center” of
coordinates, in that its mass
dipole vanishes
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Intro Extended body Limits Motion Field

Local coordinates

Fermi-Walker coordinates
spatial coordinates xa span
surface intersecting zµ(τ)
orthogonally

time t on that surface = proper
time τ

radial distance r2 = δabx
axb is

geodesic distance from γ
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Solving the EFE in buffer region

Expansion for small r

allow all negative powers of r in h
(n)
µν

but inner expansion must not have negative powers of ε

⇒ most singular power of r in εnh
(n)
µν is εn

rn = εn

εnr̃n = 1
r̃n

Therefore

h(n)µν =
1

rn
h(n,−n)µν + r−n+1h(n,−n+1)

µν + r−n+2h(n,−n+2)
µν + . . .

Information from inner expansion

1/r̃n terms arise from asymptotic expansion of zeroth-order
background in inner expansion

⇒ h
(n,−n)
µν is determined by multipole moments of isolated body
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Form of solution in buffer region

What appears in the solution?

throw expansion into nth-order wave equation, solve order by order
in r

expand each h
(n,p)
µν in spherical harmonics

given a worldline γ, the solution at all orders is fully characterized by

1 body’s multipole moments (and corrections thereto): ∼ Y `m

r`+1

2 smooth solutions to vacuum wave equation: ∼ r`Y `m

everything else made of (linear or nonlinear) combinations of the
above

Self field and regular field

multipole moments define h
S(n)
µν ; interpret as bound field of body

smooth homogeneous solutions define h
R(n)
µν ; free radiation,

determined by global boundary conditions
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First and second order solutions

First order

h
(1)
µν = h

S(1)
µν + h

R(1)
µν

h
S(1)
µν ∼ 1/r +O(r0) defined by mass monopole m

h
R(1)
µν is undetermined homogenous solution regular at r = 0

evolution equations (from gauge condition): ṁ = 0 and aµ(0) = 0

(assuming aµ = aµ(0) + εaµ(1) + . . .)

Second order

h
(2)
µν = h

S(2)
µν + h

R(2)
µν

h
S(2)
µν ∼ 1/r2 +O(1/r) defined by
1 mass correction δm
2 mass dipole Mµ

3 spin dipole Sµ

evolution equations: Ṡµ = 0, ˙δm = . . ., and Ṁµ = . . .

Adam Pound Self-force: foundations and formalism



Intro Extended body Limits Motion Field

A master equation of motion

Evolution of mass dipole

M̈α −RαβγδuβuγMδ = −maα(1) + 1
2R

α
βγδu

βSγδ

− 1
2m
(
gαδ + uαuδ

)(
2h

R(1)
δβ;γ − h

R(1)
βγ;δ

)
uβuγ

Includes
geodesic deviation

first-order term in acceleration of γ

Mathisson-Papapetrou spin force

self-force (force due to regular field)

this relationship between aα and
Mα is valid for any γ
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Equations of motion

Self-force in self-consistent expansion

γ defined by Mα(t) ≡ 0. Therefore

aα(1) = − 1
2

(
gαδ + uαuδ

)(
2h

R(1)
δβ;γ − h

R(1)
βγ;δ

)
uβuγ

through order ε, small body moves on a geodesic of gµν + hRµν

Self-force in power series expansion

γ is geodesic, so aµ(n) = 0. Therefore

∂2tM
α = Rαβγδu

βuγMδ − 1
2m
(
gαδ + uαuδ

)(
2h

R(1)
δβ;γ − h

R(1)
βγ;δ

)
uβuγ

Adam Pound Self-force: foundations and formalism



Intro Extended body Limits Motion Field

Outline

1 Introduction

2 Motion of a small extended body

3 Point particle limits & matched asymptotic expansions

4 Equation of motion

5 Finding the global field

Adam Pound Self-force: foundations and formalism
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Effective interior metric

From self-field to singular field

hSµν and hRµν derived only in buffer region

simply extend them to all r > 0 (and r = 0, for hRµν)

does not change field in buffer region or beyond
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Intro Extended body Limits Motion Field

Obtaining global solution

Puncture/effective source scheme

define hPµν as small-r expansion of hSµν truncated at order r or higher

define hRµν = hµν − hPµν ' hRµν

The point...

hSµν found in buffer region suffices to determine both hRµν and global
solution outside body
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Effective stress-energy tensor

What looks like the source of the perturbation?

all terms in hSµν are (linear and nonlinear) combinations of multipole

moment terms ∼ Y `m/r`+1

using ∂i∂i1/r = −4πδ3(xa), can show moments are effectively
sourced by

Tµν [γ] =
∑
`

∫
γ
Iµνα1...α`∇α1

· · · ∇α1

δ4(xρ−zρ(τ))√
−g dτ

in buffer region and outside it, body looks like a skeleton of
multipole moments on γ

Point particle picture recovered

at first order, there is only the mass monopole

⇒ Tµν(1) [γ] =
∫
γ
muµuν δ

4(xρ−zρ(τ))√
−g dτ

all the early point-particle results hold true
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Conclusion

Determining the motion of a small body

a self-gravitating material body moves as a test body in an effective
geometry gµν + hRµν

EFE solved perturbatively to find full field hµν outside body and the
piece hRµν that determines the motion

singular field hSµν calculated in buffer region outside body suffices to

determine both hRµν and hµν

Current status
point particle picture and MiSaTaQuWa equation have been justified

for spherical body, analytical portion of problem now also complete
at second order

for more general body, we will require some model for evolution of
body’s multipole moments
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