Self-force: Foundations and formalism

Adam Pound

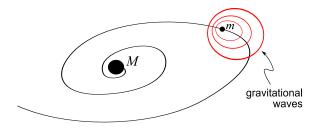
University of Southampton

June 11, 2012

Motivation

Extreme-mass-ratio inspirals

- solar-mass neutron star or black hole orbits supermassive black hole
- ullet m emits gravitational radiation, loses energy, spirals into M
- waveforms carry information about strong-field dynamics and structure of spacetime near black hole
- need to model motion of small body



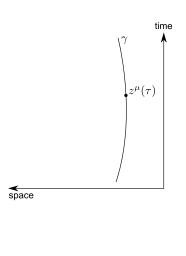
Linearized theory

• treat *m* as point particle in background $g_{\mu\nu}$ $\Rightarrow T^{\mu\nu}_{(1)} = \int_{\gamma} m u^{\mu} u^{\nu} \frac{\delta^4(x^{\rho} - z^{\rho}(\tau))}{\sqrt{-\tau}} d\tau$

• linearized EFE
$$\delta G^{\mu\nu}[h^{(1)}_{\rho\sigma}] = 8\pi T^{\mu\nu}_{(1)}$$

 $\Rightarrow h^{(1)}_{\mu\nu} = m \int_{\gamma} G_{\mu\nu\mu'\nu'} u^{\mu'} u^{\nu'} d\tau$

- perturbation propagates within light cone
- also, caustics develop—light "cone" intersects itself $\Rightarrow h^{(1)}_{\mu\nu}$ depends on entire past history of γ



Linearized theory

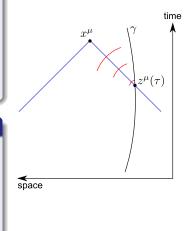
• treat m as point particle in background $g_{\mu\nu}$

$$\Rightarrow T_{(1)}^{\mu\nu} = \int_{\gamma} m u^{\mu} u^{\nu} \frac{\delta^4 (x^{\rho} - z^{\rho}(\tau))}{\sqrt{-g}} d\tau$$

• linearized EFE
$$\delta G^{\mu\nu}[h^{(1)}_{\rho\sigma}] = 8\pi T^{\mu\nu}_{(1)}$$

 $\Rightarrow h^{(1)}_{\mu\nu} = m \int_{\gamma} G_{\mu\nu\mu'\nu'} u^{\mu'} u^{\nu'} d\tau$

- perturbation propagates within light cone
- also, caustics develop—light "cone" intersects itself $\Rightarrow h^{(1)}_{\mu\nu}$ depends on entire past history of γ



Linearized theory

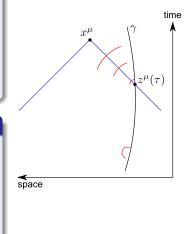
• treat m as point particle in background $g_{\mu\nu}$

$$\Rightarrow T_{(1)}^{\mu\nu} = \int_{\gamma} m u^{\mu} u^{\nu} \frac{\delta^{*}(x^{\nu} - z^{\nu}(\tau))}{\sqrt{-g}} d\tau$$

• linearized EFE
$$\delta G^{\mu\nu}[h_{\rho\sigma}^{(1)}] = 8\pi T_{(1)}^{\mu\nu}$$

 $\Rightarrow h_{\mu\nu}^{(1)} = m \int_{\gamma} G_{\mu\nu\mu'\nu'} u^{\mu'} u^{\nu'} d\tau$

- perturbation propagates within light cone
- also, caustics develop—light "cone" intersects itself $\Rightarrow h^{(1)}_{\mu\nu}$ depends on entire past history of γ



Linearized theory

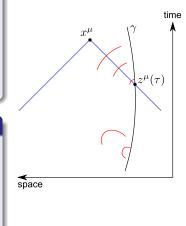
• treat m as point particle in background $g_{\mu\nu}$

$$\Rightarrow T_{(1)}^{\mu\nu} = \int_{\gamma} m u^{\mu} u^{\nu} \frac{\delta^{*}(x^{\nu} - z^{\nu}(\tau))}{\sqrt{-g}} d\tau$$

• linearized EFE
$$\delta G^{\mu\nu}[h_{\rho\sigma}^{(1)}] = 8\pi T_{(1)}^{\mu\nu}$$

 $\Rightarrow h_{\mu\nu}^{(1)} = m \int_{\gamma} G_{\mu\nu\mu'\nu'} u^{\mu'} u^{\nu'} d\tau$

- perturbation propagates within light cone
- also, caustics develop—light "cone" intersects itself $\Rightarrow h^{(1)}_{\mu\nu}$ depends on entire past history of γ



Linearized theory

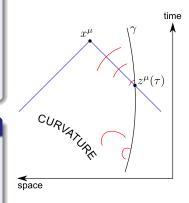
• treat m as point particle in background $g_{\mu\nu}$

$$\Rightarrow T^{\mu\nu}_{(1)} = \int_{\gamma} m u^{\mu} u^{\nu} \frac{\delta^{\gamma} (x^{\nu} - z^{\nu}(\tau))}{\sqrt{-g}} d\tau$$

• linearized EFE
$$\delta G^{\mu\nu}[h_{\rho\sigma}^{(1)}] = 8\pi T_{(1)}^{\mu\nu}$$

 $\Rightarrow h_{\mu\nu}^{(1)} = m \int_{\gamma} G_{\mu\nu\mu'\nu'} u^{\mu'} u^{\nu'} d\tau$

- perturbation propagates within light cone
- also, caustics develop—light "cone" intersects itself $\Rightarrow h^{(1)}_{\mu\nu}$ depends on entire past history of γ



Linearized theory

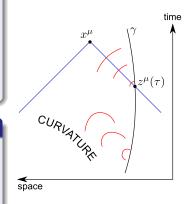
• treat m as point particle in background $g_{\mu\nu}$

$$\Rightarrow T^{\mu\nu}_{(1)} = \int_{\gamma} m u^{\mu} u^{\nu} \frac{\delta^{\gamma} (x^{\nu} - z^{\nu}(\tau))}{\sqrt{-g}} d\tau$$

• linearized EFE
$$\delta G^{\mu\nu}[h_{\rho\sigma}^{(1)}] = 8\pi T_{(1)}^{\mu\nu}$$

 $\Rightarrow h_{\mu\nu}^{(1)} = m \int_{\gamma} G_{\mu\nu\mu'\nu'} u^{\mu'} u^{\nu'} d\tau$

- perturbation propagates within light cone
- also, caustics develop—light "cone" intersects itself $\Rightarrow h^{(1)}_{\mu\nu}$ depends on entire past history of γ



Linearized theory

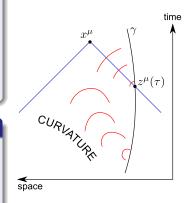
• treat *m* as point particle in background $g_{\mu\nu}$

$$\Rightarrow T^{\mu\nu}_{(1)} = \int_{\gamma} m u^{\mu} u^{\nu} \frac{\delta^{4} (x^{\nu} - z^{\nu}(\tau))}{\sqrt{-g}} d\tau$$

• linearized EFE
$$\delta G^{\mu\nu}[h_{\rho\sigma}^{(1)}] = 8\pi T_{(1)}^{\mu\nu}$$

 $\Rightarrow h_{\mu\nu}^{(1)} = m \int_{\gamma} G_{\mu\nu\mu'\nu'} u^{\mu'} u^{\nu'} d\tau$

- perturbation propagates within light cone
- also, caustics develop—light "cone" intersects itself $\Rightarrow h^{(1)}_{\mu\nu}$ depends on entire past history of γ



Linearized theory

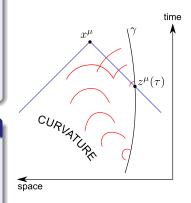
• treat *m* as point particle in background $g_{\mu\nu}$

$$\Rightarrow T_{(1)}^{\mu\nu} = \int_{\gamma} m u^{\mu} u^{\nu} \frac{\delta^{*}(x^{\nu} - z^{\nu}(\tau))}{\sqrt{-g}} d\tau$$

• linearized EFE
$$\delta G^{\mu\nu}[h_{\rho\sigma}^{(1)}] = 8\pi T_{(1)}^{\mu\nu}$$

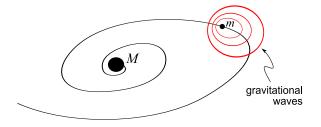
 $\Rightarrow h_{\mu\nu}^{(1)} = m \int_{\gamma} G_{\mu\nu\mu'\nu'} u^{\mu'} u^{\nu'} d\tau$

- perturbation propagates within light cone
- also, caustics develop—light "cone" intersects itself $\Rightarrow h^{(1)}_{\mu\nu}$ depends on entire past history of γ



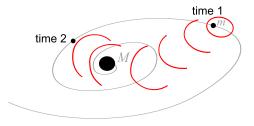
Intro Extended body Limits Motion Field

Extreme-mass-ratio inspirals



Intro Extended body Limits Motion Field

Extreme-mass-ratio inspirals



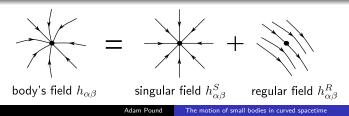
Self-force: geodesic motion in an effective metric

MiSaTaQuWa equation (Mino,Sasaki,Tanaka, & Quinn,Wald)

- $\bullet\,$ nonlocal tail acts as potential, exerts force $F^{\mu} \sim m \nabla^{\mu} {\rm tail}$
- tail isn't nice: non-differentiable, not a solution to a field equation

Detweiler-Whiting decomposition

- local field near particle split into two: $h^{(1)}_{\mu\nu}=h^{\rm S(1)}_{\mu\nu}+h^{\rm R(1)}_{\mu\nu}$
- $h_{\mu\nu}^{\rm S(1)} \sim \frac{m}{r} + O(r^0)$; local bound field of particle
- $h_{\mu\nu}^{\rm R(1)} \sim {\rm tail} + {\rm local \ terms};$ smooth solution to source-free EFE
- motion is geodesic in effective metric $g_{\mu\nu} + h^{{
 m R}(1)}_{\mu\nu}$



Outline

- 2 Motion of a small extended body
- 3 Point particle limits & matched asymptotic expansions
- 4 Equation of motion
- 5 Finding the global field

Outline

1 Introduction

2 Motion of a small extended body

Oint particle limits & matched asymptotic expansions

4 Equation of motion

5 Finding the global field

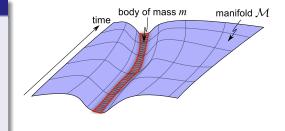
A small extended body moving through spacetime

Fundamental question

• how does a body's gravitational field affect its own motion?

Regime: small body

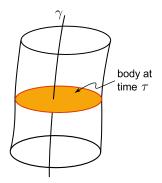
- examine spacetime $(\mathcal{M}, \mathsf{g}_{\mu\nu})$ containing body of mass m and external lengthscales \mathcal{R}
- seek representation of body's motion when its mass and size are $\ll \mathcal{R}$



Intro Extended body Limits Motion Field

Non-perturbative approach [Harte 2011]

- assume the body is material, not a black hole
- give body stress-energy $T^{\mu\nu}$
- define momentum $P \sim \int_{body} T^{\mu\nu}$



Motion

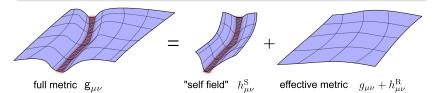
 $\bullet\,$ choose representative worldline γ with coordinates $z^\mu(\tau)$ inside body

• relate
$$u^{\mu} = \frac{dz^{\mu}}{d\tau}$$
 to P
 $\Rightarrow \frac{DP}{d\tau}$ determines acceleration of γ

Motion of a test body in an effective metric

Non-perturbative decomposition

• split metric into "self-field" generated by body and slowly varying remainder



Equation of motion

- define multipole moments $I \sim \int_{body} T^{\mu\nu}$
- body moves as test body in effective metric g_{μν} + h^R_{μν}: motion is geodesic except for coupling of multipole moments to curvature of effective metric

However...

Material body

integrals over body's interior preclude description of black hole

Field

 describing motion in terms of metric isn't sufficient: we need a means of solving the EFE to obtain the metric (and a means of isolating the effective metric)

Outline

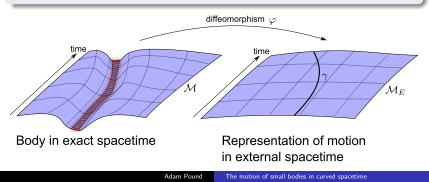
- 2 Motion of a small extended body
- 3 Point particle limits & matched asymptotic expansions
- 4 Equation of motion
- 5 Finding the global field

Perturbation theory

• treat body as source of perturbation of external background spacetime $(\mathcal{M}_E, g_{\mu\nu})$:

$$g_{\mu\nu} = g_{\mu\nu} + \epsilon h^{(1)}_{\mu\nu} + \epsilon^2 h^{(2)}_{\mu\nu} + \dots$$

- $\bullet \ \epsilon \ {\rm counts} \ {\rm powers} \ {\rm of} \ m$
- assume body is compact, so as $m \to 0$, linear size $\to 0$ at same rate
- seek representation of motion in $(\mathcal{M}_E, g_{\mu\nu})$



Approach I [Gralla & Wald 2008]: power series

Expansion of EFE

• expand metric in Taylor series:

$$\mathbf{g}_{\mu\nu}(x,\epsilon) = g_{\mu\nu}(x) + \epsilon h^{(1)}_{\mu\nu}(x) + \epsilon^2 h^{(2)}_{\mu\nu}(x) + \dots$$

• solve EFE order by order outside body:

$$\delta G_{\mu\nu}[h^{(1)}] = 0$$

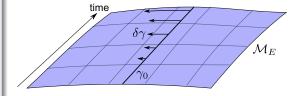
$$\delta G_{\mu\nu}[h^{(2)}] = -\delta^2 G_{\mu\nu}[h^{(1)}]$$

• motion determined by Bianchi identity

Representation of motion in power series

Expanded worldline

- worldline γ_0 identified as remnant of body left at $\epsilon = 0$
- γ_0 is geodesic
- corrections accounted for by deviation vector $\delta\gamma$



Problem

- as body drifts away from γ_0 , $\delta\gamma$ grows large
- representation of motion only meaningful and accurate for short time

Approach II [Pound 2010]: self-consistent expansion

Expansion of EFE

 $\bullet\,$ allow γ to depend on ϵ and assume expansion of form

$$g_{\mu\nu}(x,\epsilon) = g_{\mu\nu}(x) + h_{\mu\nu}(x;\gamma_{\epsilon})$$

= $g_{\mu\nu}(x) + \epsilon h^{(1)}_{\mu\nu}(x;\gamma_{\epsilon}) + \epsilon^2 h^{(2)}_{\mu\nu}(x;\gamma_{\epsilon}) + \dots$

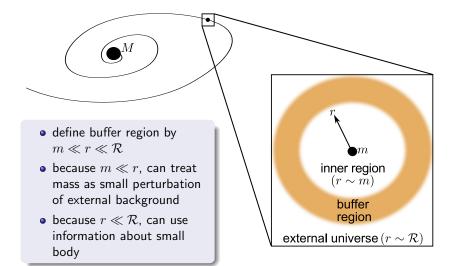
- need a method of systematically solving for each $h_{\mu\nu}^{(n)}$ \Rightarrow impose Lorenz gauge (or other wave gauge) on the total perturbation: $\nabla_{\mu}\bar{h}^{\mu\nu} = 0$
- $\delta G_{\mu\nu}$ becomes a wave operator and EFE outside body becomes weakly nonlinear wave equation:

$$\Box \bar{h}_{\mu\nu} + 2R_{\mu}{}^{\rho}{}_{\nu}{}^{\sigma}\bar{h}_{\rho\sigma} = 2\delta^2 G_{\mu\nu}[h] + \dots$$

- can be split into wave equations for each subsequent $h^{(n)}_{\mu\nu}[\gamma]$ and exactly solved for arbitrary γ
- $\bullet\,$ gauge condition will then constrain $\gamma\,$

Intro Extended body Limits Motion Field

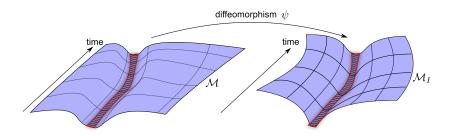
How to determine motion? Buffer region



Matched asymptotic expansions: inner expansion

Zoom in on body

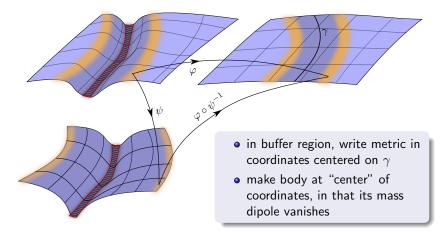
- \bullet use scaled coords $\tilde{r}\sim r/\epsilon$ to keep size of body fixed, send other distances to infinity as $\epsilon\to 0$
- unperturbed body defines background spacetime $g_{I\mu\nu}$ in inner expansion
- buffer region at asymptotic infinity $r \gg m$ \Rightarrow can define multipole moments without integrals over body



Representation of motion in self-consistent approximation

Enforce a relationship between the expansions

...to define a worldline for all time, even for black hole



Outline

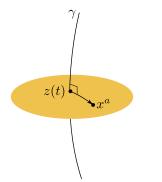
1 Introduction

- 2 Motion of a small extended body
- Point particle limits & matched asymptotic expansions

4 Equation of motion

5 Finding the global field

Local coordinates



Fermi-Walker coordinates

- spatial coordinates x^a span surface intersecting $z^\mu(\tau)$ orthogonally
- time t on that surface
 = proper time τ
- radial distance $r^2 = \delta_{ab} x^a x^b$ is geodesic distance from γ

Solving the EFE in buffer region

Expansion for small r

- allow all negative powers of r in $h^{(n)}_{\mu
 u}$
- but inner expansion must not have negative powers of ϵ \Rightarrow most singular power of r in $\epsilon^n h_{\mu\nu}^{(n)}$ is $\frac{\epsilon^n}{r^n} = \frac{\epsilon^n}{\epsilon^n \tilde{r}^n} = \frac{1}{\tilde{r}^n}$

Therefore

$$h_{\mu\nu}^{(n)} = \frac{1}{r^n} h_{\mu\nu}^{(n,-n)} + r^{-n+1} h_{\mu\nu}^{(n,-n+1)} + r^{-n+2} h_{\mu\nu}^{(n,-n+2)} + \dots$$

Information from inner expansion

- $1/\tilde{r}^n$ terms arise from asymptotic expansion of zeroth-order background in inner expansion
 - $\Rightarrow h_{\mu\nu}^{(n,-n)}$ is determined by multipole moments of isolated body

Form of solution in buffer region

What appears in the solution?

- $\bullet\,$ throw expansion into $n{\rm th}{\rm -order}$ wave equation, solve order by order in r
- expand each $h_{\mu\nu}^{(n,p)}$ in spherical harmonics
- $\bullet\,$ given a worldline $\gamma,$ the solution at all orders is fully characterized by

() body's multipole moments (and corrections thereto): $\sim rac{Y^{\ell m}}{r^{\ell+1}}$

2 smooth solutions to vacuum wave equation: $\sim r^\ell Y^{\ell m}$

• everything else made of (linear or nonlinear) combinations of the above

Self field and regular field

- multipole moments define $h_{\mu\nu}^{{
 m S}(n)}$; interpret as bound field of body
- smooth homogeneous solutions define $h^{{\rm R}(n)}_{\mu\nu}$; free radiation, determined by global boundary conditions

First and second order solutions

First order

•
$$h_{\mu\nu}^{(1)} = h_{\mu\nu}^{S(1)} + h_{\mu\nu}^{R(1)}$$

- $h^{S(1)}_{\mu\nu} \sim 1/r + O(r^0)$ defined by mass monopole m
- $h^{R(1)}_{\mu\nu}$ is undetermined homogenous solution regular at r=0
- evolution equations (from gauge condition): $\dot{m} = 0$ and $a^{\mu}_{(0)} = 0$ (assuming $a^{\mu} = a^{\mu}_{(0)} + \epsilon a^{\mu}_{(1)} + \ldots$)

Second order

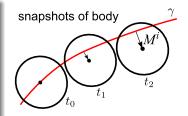
A master equation of motion

Evolution of mass dipole

$$\ddot{M}^{\alpha} - R^{\alpha}{}_{\beta\gamma\delta}u^{\beta}u^{\gamma}M^{\delta} = -ma^{\alpha}_{(1)} + \frac{1}{2}R^{\alpha}{}_{\beta\gamma\delta}u^{\beta}S^{\gamma\delta} - \frac{1}{2}m(g^{\alpha\delta} + u^{\alpha}u^{\delta})(2h^{R(1)}_{\delta\beta;\gamma} - h^{R(1)}_{\beta\gamma;\delta})u^{\beta}u^{\gamma}$$

Includes

- geodesic deviation
- $\bullet\,$ first-order term in acceleration of $\gamma\,$
- Mathisson-Papapetrou spin force
- self-force (force due to regular field)
- this relationship between a^{α} and M^{α} is valid for any γ



Equations of motion

Self-force in self-consistent expansion

• γ defined by $M_{\alpha}(t) \equiv 0$. Therefore

$$a^{\alpha}_{(1)} = -\frac{1}{2} \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{R(1)}_{\delta\beta;\gamma} - h^{R(1)}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma}$$

• through order ϵ , small body moves on a geodesic of $g_{\mu\nu} + h^R_{\mu\nu}$

Self-force in power series expansion

• γ is geodesic, so $a^{\mu}_{(n)} = 0$. Therefore

$$\partial_t^2 M^{\alpha} = R^{\alpha}{}_{\beta\gamma\delta} u^{\beta} u^{\gamma} M^{\delta} - \frac{1}{2} m \left(g^{\alpha\delta} + u^{\alpha} u^{\delta} \right) \left(2h^{R(1)}_{\delta\beta;\gamma} - h^{R(1)}_{\beta\gamma;\delta} \right) u^{\beta} u^{\gamma}$$

Outline

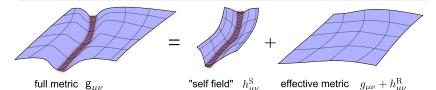
1 Introduction

- 2 Motion of a small extended body
- 3 Point particle limits & matched asymptotic expansions
- 4 Equation of motion
- **5** Finding the global field

Effective interior metric

From self-field to singular field

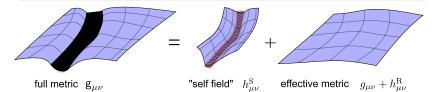
- $h_{\mu\nu}^{\rm S}$ and $h_{\mu\nu}^{\rm R}$ derived only in buffer region
- simply extend them to all r > 0 (and r = 0, for $h_{\mu\nu}^{\rm R}$)
- does not change field in buffer region or beyond



Effective interior metric

From self-field to singular field

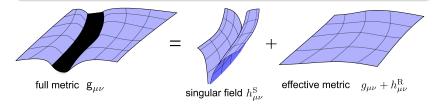
- $h_{\mu\nu}^{\rm S}$ and $h_{\mu\nu}^{\rm R}$ derived only in buffer region
- simply extend them to all r > 0 (and r = 0, for $h_{\mu\nu}^{\rm R}$)
- does not change field in buffer region or beyond



Effective interior metric

From self-field to singular field

- $h_{\mu\nu}^{\rm S}$ and $h_{\mu\nu}^{\rm R}$ derived only in buffer region
- simply extend them to all r > 0 (and r = 0, for $h_{\mu\nu}^{\rm R}$)
- does not change field in buffer region or beyond

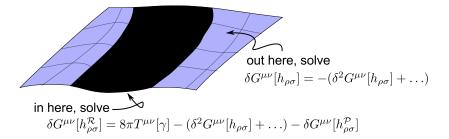


Obtaining global solution

Puncture/effective source scheme

 $\bullet\,$ define $h^{\mathcal{P}}_{\mu\nu}$ as small-r expansion of $h^{\rm S}_{\mu\nu}$ truncated at order r or higher

• define
$$h_{\mu\nu}^{\mathcal{R}} = h_{\mu\nu} - h_{\mu\nu}^{\mathcal{P}} \simeq h_{\mu\nu}^{\mathrm{R}}$$



The point...

• $h_{\mu\nu}^{\rm S}$ found in buffer region suffices to determine effective metric "inside" body and full metric everywhere else

Effective stress-energy tensor

What looks like the source of the perturbation?

- all terms in $h_{\mu\nu}^{\rm S}$ are (linear and nonlinear) combinations of multipole moment terms $\sim Y^{\ell m}/r^{\ell+1}$
- using $\partial^i \partial_i 1/r = -4\pi \delta^3(x^a)$, can show moments are effectively sourced by $T^{\mu\nu}[\gamma] = \sum_{\ell} \int_{\gamma} I^{\mu\nu\alpha_1...\alpha_\ell} \nabla_{\alpha_1} \cdots \nabla_{\alpha_\ell} \frac{\delta^4(x^{\rho} - z^{\rho}(\tau))}{\sqrt{-g}} d\tau$

• in buffer region and outside it, body looks like a skeleton of multipole moments on γ

Point particle picture recovered

- at first order, there is only the mass monopole $\Rightarrow T^{\mu\nu}_{(1)}[\gamma] = \int_{\gamma} m u^{\mu} u^{\nu} \frac{\delta^4(x^{\rho} z^{\rho}(\tau))}{\sqrt{-g}} d\tau$
- all the early point-particle results hold true

Conclusion

Determining the motion of a small body

- a self-gravitating material body moves as a test body in an effective geometry $g_{\mu\nu} + h^{\rm R}_{\mu\nu}$
- EFE solved perturbatively to find full field $h_{\mu\nu}$ outside body and the piece $h^{\rm R}_{\mu\nu}$ that determines the motion
- singular field $h_{\mu\nu}^{\rm S}$ calculated in buffer region outside body suffices to determine both $h_{\mu\nu}^{\rm R}$ and $h_{\mu\nu}$

Current status

- point particle picture and MiSaTaQuWa equation have been justified
- for spherical body, analytical portion of problem now also complete at second order [Pound 2012, Gralla 2012]
- for more general body, we will require some model for evolution of body's multipole moments