
Introduction Results Future directions

Numerical calculation of Green functions in black hole
spacetimes

Anıl Zenginoğlu

work in collaboration with Chad R. Galley

arxiv:1206.1109

California Institute of Technology

15th Capra Meeting, College Park, June 11, 2012



Introduction Results Future directions

Motivation

The most general way of solving a wave propagation problem is by constructing
its Green function. The Green function for the scalar wave operator 2 satisfies

2G(x , x ′) = δ4(x − x ′) 2G = 1

The inhomogeneous scalar wave equation

2φ(x) = S(x), 2φ = S

can be solved via the Green function simply by

φ(x) =
∫

G(x , x ′)S(x ′)d4x ′, φ = S/2 = G S

A similar procedure applies to initial data.
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Numerical Solution

An approximation to the Green function is obtained numerically for σ = 0.2

2φx′(x) = 1
(
√
2πσ)4

exp
[
− (x − x ′)2

2σ2

]

For the simulations we used SpEC with a hyperboloidal layer.
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What happens then?

Focusing caused by the BH leads to formation of caustics.
Caustic formation is an everyday phenomenon.

Image from www.shutterstock.com
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What happens then?

Focusing caused by the BH leads to formation of caustics.
Caustic formation is an everyday phenomenon.

Images from Wikipedia
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What happens then?

See Visualization

http://www.youtube.com/watch?v=Pe8sRjqtldQ&hd=1
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Observer’s measurement

An observer at null infinity along the z-axis measures the signal below.
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Arrival times

Infinitely many null geodesics
connect the source and the
observer because of the
photon sphere.

N = 3

N = 1 N = 1

N = 2

N = 0

� �

The arrival times of the
echoes agree with revolution
around the photon sphere.

Thalf = π
√
27M ≈ 16.32M.

0 2 4 6 8 10
Caustic echo

16

17

18

19

20

21

22

T
im

e
 b

e
tw

e
e
n

 e
ch

o
e
s 

[M
]

0 2 4 6 8 10
Caustic echo

32.60

32.65

32.70

32.75

32.80

32.85

32.90

32.95

33.00

1 3 5 7 9 11
Caustic echo

32.60

32.65

32.70

32.75

32.80

32.85

32.90

32.95

33.00



Introduction Results Future directions

Exponential decay

The amplitude decays with
the Lyapunov exponent of the
unstable null geodesics.

λ =
1

2
√
27M

≈ 0.096M−1.
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These two properties agree with the large ` limit of QNMs.

ω ∼ 1
2
√
27M

(
1− i

)
.
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Profiles and the four-fold structure

Each caustic passage induces a shift
of −π/2 in the profile of the signal,
known as Gouy phase shift (1890),
known as a Hilbert transform in sig-
nal processing.

One can write down an analytic ex-
pression for the Green function in
the geometrical optics approxima-
tion and explain the profiles of the
caustic echoes.
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The two-fold cycle

The energy amplification at
the caustics depends on the
width of the Gaussian source.
With

E =
1
2

∫
I
dt
∣∣φ̇(t)∣∣2,

we show

Amplification ≡ EA

EB,C
∼ 1
σ
.
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Finite number of "images"

Propagation within the null
cone leads to power-law decay
at late times.

pR(t) =
d ln |φ(t,R)|

d ln t .
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see a finite number of echoes
(or images).
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Heuristic description

The geometrical optics ap-
proximation to the Green
function agrees well with
the early part of the signal.
Adding the tail contribution
leads to good agreement ev-
erywhere, including the zero
crossings.
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The approximation breaks
down along the caustic line.
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Future directions

Analytical
• Use the numerical Green function in the computation of self-force.
• Analytic approximations to the Green function.

• Large `-limit of QNMs + tail contribution.
• Geometrical optics + diffraction theory.
• Gaussian approximation, Kichhoff’s integral representation.

• Capture the base-point dependence of the Green function
• Understand the evolution in Kerr spacetime

Numerical
• Second order formulation of the scalar wave equation.
• Implicit-explicit time stepping.
• Adaptive Mesh Refinement (?).
• Frozen Gaussian beam approximation.
• Butterfly algorithm.

http://www.youtube.com/watch?v=iEA31IL1mFI&hd=1
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Inspired by Ori, Casals, Dolan, Ottewill, Wardell.

Thank You!

http://www.youtube.com/watch?v=iEA31IL1mFI&hd=1
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