PROGRESS AND PROSPECTS TOWARD A SPACE-BASED GRAVITATIONAL-WAVE OBSERVATORY

John Baker 15th Capra Meeting 13 June 2012 University of Maryland - College Park

Plan: LISA past and future

- No theory here
 - Extreme/Intermediate Mass-Ratio Inspirals (EMRI/ IMRI) are an astrophysical testbed for GR
 - Space-based GW observation (ie LISA) needed
- Our old friend LISA before 2010
- LISA 2011–2012
 - (based on GSFC activity and 9th LISA Symposium)
 - Activity in Europe (LISA Pathfinder, NGO, Consortium)
 - Activity in the US (SGO Study)
 - Activity in Asia
- LISA in the future

What constitutes LISA?

NASA

- Drag–free control
 - Free-falling test mass
 - Precision stationkeeping
- Continuous laser ranging
- Heliocentric orbits
 - Constellation in equilateral triangle
 - Highly stable orbits, without orbital stationkeeping
 - Benign environment
 - Million-kilometer arms (LISA=5M km)
- Laser frequency noise subtraction (TDI)
 - Michelson's white---light fringe condition through postprocessing
- Sensitive to MBH mergers, galactic binaries, ... and EMRI's

A Brief History of LISA

- 1974 A dinner conversation: Weiss, Bender, Misner and Pound
- 1985 LAGOS Concept (Faller, Bender, Hall, Hils and Vincent)
- 1993 LISAG ESA M3 study: six S/C LISA & Sagittarius
- 1997 JPL Team-X Study: 3 S/C LISA
- 2001–2015 LISA Pathfinder and ST-7 DRS
- 2001 NASA/ESA project began
- 2003 TRIP Review
- 2005 GSFC AETD Review
- 2007 NRC BEPAC Review
- 2009 Astro2010 Review
- 2011 NASA/ESA partnership ended
- 2011 Next Generation Gravitational–Wave Observatory (NGO) started
- 2012 ESA L1 downselect

Progress toward LISA

- Technology
 - LISA Pathfinder
 - Other technology: progress on many fronts
 - Now high-level of technical readiness, but awaiting LPF result

• Science

- Enriched understanding of astrophysics of all sources
- Advances in theoretical understanding waveforms
- Demonstration of data analysis challenges in MLDC
- Broader appreciation of overall science opportunity

• LISA in 2010

- Equal NASA / ESA partnership
- NASA subject to decadal survey review; ESA subject to Cosmic Visions L1 downselect
- launch around ~2020

7

stand /

LPF transfer orbit thermal testing

- To demonstrate critical 25A technologies in a space environment:
 - Gravitational Reference Sensing
 - Drag-free attitude control
 - Micro–Newton thrusters

LISA Pathfinder

- Interferometry with free-falling mirrors
- Lead by European Space Agency (ESA)
 - mainly European payload: LISA Test Package
 - with smaller NASA contribution (ST7)
 - ~\$700 million invested (my rough est.)
- Status
 - much of LISA technology already demonstrated in development
 - Issue resolved with test mass launch lock
 - EU thruster issues: now selecting between cold-gas and FEEP thrusters
 - Integration going into "hibernation" until Dec 2013
 - Launch in 2014

Agency (FSA)

2010 Decadal Survey Results

- Recommended large space projects
 - 1. Wide Field IR Survey Telescope (WFIRST) (\$1.6B)
 - 2. Explorer program augmentation (\$400M)
 - 3. LISA [ESA partnership] (\$1.4B for US)
 - 4. International X-ray Observatory (IXO) (\$3.1B) [ESA partnership]
- A strong astrophysics community endorsement for LISA as a major mission!
- ... provides 2010–2020 roadmap for NASA (funds permitting)

New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics; National Research Council (2010)

er, about those funds...

Shown by Paul Hertz, Associate Administrator for NASA Science Mission Directorate (SMD), to Committee on Astronomy and Astrophysics, June 4 2012 (see http://sites.nationalacademies.org/BPA/BPA_048755)

Shown by Paul Hertz, Associate Administrator for NASA Science Mission Directorate (SMD), to Committee on Astronomy and Astrophysics, June 4 2012 (see http://sites.nationalacademies.org/BPA/BPA_048755)

Not adjusted for inflation! Big Question: What happens after JWST launch?

LISA 2011–2012: Europe

- Objective: Cosmic Visions L1 selection, spring 2012
 - Candidates: LISA, IXO, Jupiter probe
 - Became: "NGO", "Athena", "Juice"
- Constraints:
 - No critical contribution from NASA (March 2011)
 - 850M Euro cost cap for ESA
 - but often ~200M Euro member state contrib
 - Launch by 2022
- LISA->eLISA aka NGO
 - Highly developed concept: extensive science case and technical detail in the "Yellow Book" <u>http://sci2.esa.int/cosmic-vision/NGO_YB.pdf</u>

LISA 2011-2012: designing eLISA

- Challenge: limit ESA costs
 - Payload to be provided by member states
 - Maximal reuse of LPF design
 - Launch savings
- Launch -> 2 Soyuz rockets
 - mass barely fits --> limited orbit options
 - --> smaller (1M km) arms and drift away orbits (innovation!)
- Payload reduction
 - smaller arms allow smaller telescopes
 - can only afford 2 arms (in mass and Euros)
- Lifetime reduction: 2 yrs of science

EMRIs with LISA and eLISA

- International science community eLISA study
 - Massive effort in April/May 2011
 - Continued until late fall "Yellow Book" completion
- EMRI detection rates (SNR 20)
 - LISA: 10–1000 per yr
 - eLISA: 1–100 per yr
 - factor of 10 sensitivity loss
- EMRI events
 - eLISA also has shortened lifetime
 - factor of ~30 loss in count
- eLISA would *probably* detect EMRIs

Cosmic Visions L1 downselect

- JUICE selected over NGO
 - concerns about NGO cost an schedule
 - NGO given top science ranking
 - and noted for European "strategic value"
- Europeans remain united behind NGO/eLISA concept
- Will coordinate through a European "eLISA Consortium"
 - "As the eLISA mission, despite not being selected, was reported to have been unanimously ranked first by ESA's scientific review committee in terms of scientific interest, strategic value for science and strategic value for the projects in Europe, the community is in good spirits: this is the first time that any space agency committee has ranked a gravitational wave observatory as its highest scientific priority."
 (see: <u>http://mpiz-koeln.mpg.de/7789</u>)
- Next opportunity may be Cosmic Visions "L2"
 - Call for concepts may come in 2014
 - Launch would nominally be expected around 2028
 - The program may be restructured for the next 2025+ decade.

NASA

LISA 2011-2012: US Study

- NASA Astrophysics expects insufficient funds for decadal science program
- EU proceeding alone
- LISA and x-ray mission demoted from "projects" to "studies" through the Physics of the Cosmos (PCOS) program
- NASA launches a 9-month study to explore cheaper ways to achieve some of decadal endorsed science

LISA 2011–2012: US Study Context

Shown by Paul Hertz, Associate Administrator for NASA Science Mission Directorate (SMD), to Committee on Astronomy and Astrophysics, June 4 2012 (see http://sites.nationalacademies.org/BPA/BPA_048755)

LISA 2011-2012: Goals of the US Study

- Develop mission concepts that will accomplish some or all of the LISA science objectives at lower cost points.
- Explore how mission architecture choices impact science, cost and risk.
- Big Questions
 - Are there concepts at \$300M, \$600M or \$1B?
 - What is the lowest cost GW mission?
 - Is there a game-changing technology that hasn't been adequately considered?

Elements of the Study

- Request for Information (RFI) due Nov. 10th.
- Core Team ~25 GSFC, JPL & university scientists and engineers critically reviewing RFI responses
- Science task force ~15 volunteer scientists evaluating science performance of concepts
- Community Science Team (CST) 10 scientists, Rai Weiss, Ned Wright co-chairs
- Public workshop December 20–21st
- Concurrent engineering studies by JPL's Team-X in March and April
- Final Report to NASA Headquarters July 6th
- Presentation to the Committee on Astronomy and Astrophysics (CAA) of the National Research Council (NRC)

RFI response concepts

19

LISA-like Concepts

Group	Group 3 (LISA-like)				
Proposal Number	11	14	15	12	13
Lead Author	Shao	Stebbins	Livas	Thorpe	Baker
Acronym		SGO High	SGO Mid	SGO Low	SGO Lowest
Novel Idea	Formation-flying payload, torsion suspension for test mass	LISA with all known cost savings	Smallest LISA-like design with 6 links	Smallest LISA-like design with 4 links	Smallest in-line LISA-like design with 4 links
Proposal Type	Instrument	Concept	Concept	Concept	Concept
Number of Alternates	1	1	1	1	1
Arm length (km)	5.0 x 10 ⁶	5.0 x 10 ⁶	1.0 x 10 ⁶	1.0 x 10 ⁶	2.0 x 10 ⁶
Spacecraft/Constellation	3+3/triangle	3/equilateral triangle	3/equilateral triangle	4/triangle (60-deg Vee)	3/In-line: Folded SyZyGy
Orbit	LISA-like	22° heliocentric, earth-trailing	9° heliocentric, earth drift-away	9° heliocentric, earth drift-away	≤9° heliocentric, earth drift-away
Trajectory		Direct injection to escape with recircularization and out-of-plane boost, 14 months	Direct injection to escape with out- of-plane boost, 21 months	Direct injection to drift away, with out-of-plane boosts, 21 months	Direct injection to escape, with small delta-v for S/C separation, 18 months
Inertial Reference	Single, torsion pendulum	Two, rectangular	Two, rectangular	Single, rectangular	Single, rectangular
Displacement Measurement		3 arms, 6 links	3 arms, 6 links	2 arms, 4 links	2 unequal arms, 4 links
Launch vehicle	Falcon 9	Shared Falcon Heavy	Falcon 9 Block 3	Shared Falcon 9 Heavy	Falcon 9 Block 2
Baseline/Extended Mission Duration	5	5/3.5	2/2	2/2	2/0
Telescope Diameter (cm)		40	25	25	25
Laser power out of telescope, EOL (W)		1.2	0.7	0.7	0.7
Sensitivity curve	No	Yes	Yes	Yes	Yes
Residual acceleration (m/s²/Hz ^{1/2})		3.0 x 10 ⁻¹⁵	3.0 x 10 ⁻¹⁵	3.0 x 10 ⁻¹⁵	3.0 x 10 ⁻¹⁵
Displacement sensitivity (m/Hz ^{1/2})		8 x 10 ⁻¹²	8 x 10 ⁻¹²	8 x 10 ⁻¹²	8 x 10 ⁻¹²

No-Drag-Free Concepts

Group	Group 1 (No drag-free)		
Proposal Number	3	16	
Lead Author	Folkner	McKenzie	
Acronym		LAGRANGE	
Novel Idea	Long baseline, no drag-free	No drag-free, geometric reduction	
Proposal Type	Concept	Concept	
Number of Alternates	2	2	
Arm length (km)	2.6 x 10 ⁸	2.09 x 10 ⁷	
Spacecraft/Constellation	3/equilateral triangle //4/square	3/isosceles triangle	
Orbit	Heliocentric	Heliocentric/ Earth-Sun L2	
Trajectory	Not specified beyond HEO parking, double lunar assist. Solar electric propulsion mentioned.	Direct escape to L2, "drift" of SC1/3 to 8° leading/trailing	
Inertial Reference	None	GOCE accelerometer	
Displacement Measurement	3 arms, 6 links	2 arms, 4 links	
Launch vehicle		Falcon 9 Block 3	
Baseline/Extended Mission Duration	3 arms, 6 links	2	
Telescope Diameter (cm)	30	20/40	
Laser power out of telescope, EOL (W)	1	1.2	
Sensitivity curve	Yes	Yes	
Residual acceleration (m/s²/Hz ^{1/2})	1.0 x 10 ⁻¹³	4.4 x 10 ⁻¹⁴ (0.001/f)^0.75	
Displacement sensitivity (m/Hz ^{1/2})	550 x 10 ⁻¹²	150 x 10 ⁻¹²	

Geocentric Concepts

Group	Group 2 (Geocentric)			
Proposal Number	4	17	7	10
Lead Author	Tinto	McWilliams	Hellings	Conklin
Acronym	GEOGRAWI	GADFLI	OMEGA	LAGRANGE
	Geocentric orbit, single spherical	Smaller telescope and laser,	Novel trajectories, Explorer cost	Earth-Moon Lagrange points,
Novel Idea	TM	smaller satellites	approach	spherical test mass, grating
Proposal Type	Concept	Concept	Concept	Concept
Number of Alternates	3	3	1	1
Arm length (km)	7.3×10^4	7.3 x 10 ⁴	1.04 x 10 ⁶	6.7 x 10⁵
Spacecraft/Constellation	3/equilateral triangle	3/equilateral triangle	6/triangle	3/equilateral triangle
Orbit	Geostationary	Equatorial, geostationary	600,000 km geocentric, earth- moon plane (retrograde)	Earth-Moon L3, L4, L5
Trajectory	Not specified	Direct launch together to geostationary, re-phase 2 S/C	Butterfly trajectories to Weak Stability Boundary, 384 days total	Either: direct to WSB, return and lunar fly-by; direct to Trans Lunar Injection, return and lunar fly-by
Inertial Reference	Single, spherical	Two, rectangular	Single, rectangular	Single, spherical
Displacement Measurement	3 arms, 6 links	3 arms, 6 links		
Launch vehicle		Falcon 9 Block 2	Small Delta or Falcon 9	Falcon 9
Baseline/Extended Mission Duration		2	3	5
Telescope Diameter (cm)	Same as LISA	15	30	20
Laser power out of telescope, EOL (W)	Same as LISA	0.7	0.7	1
Sensitivity curve	Yes	Yes	Yes	Yes
Residual acceleration (m/s ² /Hz ^{1/2})	3.0 x 10 ⁻¹⁵	3.0 x 10 ⁻¹⁵	3.0 x 10 ⁻¹⁵	3.0 x 10 ⁻¹⁵
Displacement sensitivity (m/Hz ^{1/2})	7 x 10 ⁻¹²	8 x 10 ⁻¹²	5 x 10 ⁻¹²	5 x 10 ⁻¹²

NASA

Other Concepts

Group		Instrument Concepts/Technologies		
Proposal Number	5	8	9	6
Lead Author	Saif	Yu	Gulian	de Vine
Acronym	InSpRL			
Novel Idea	Atom interferometry	Atom inteferometer for inertial sensor	Electrons in superconductor	Replace optical bench with photonic integrated circuit
Proposal Type	Concept	Instrument	Concept	Instrument
Number of Alternates	2			
Arm length (km)	0.5/500			
Spacecraft/Constellation	1//2/in-line		1	
Orbit	1200 km above geostationary	LISA-like	Not specified.	Comparable to LISA
Trajectory	Not specified	LISA-like	Not specified	
Inertial Reference	Atom interferometers			
Displacement Measurement				
Launch vehicle	Falcon			
Baseline/Extended Mission				
Duration				
Telescope Diameter (cm)				
Laser power out of telescope, EOL (W)	10-20			
Sensitivity curve	Yes			Comparable to LISA
Residual acceleration				
(m/s²/Hz ^{1/2})				
Displacement sensitivity				F v 10 ⁻¹²
(m/Hz ^{1/2})				2 X 10

NASA

Architecture Choices – Mission Design

- Heliocentric fixed, drift-away, in-line, L2/ leading/trailing, 1 AU
- Geocentric OMEGA, geosync, L3/L4/L5, LEO
- Compare delta-v, constellation stability, propellant, thermal, modulation of science signal, comm

Architecture Choices – Inertial Reference

- Proof mass cubical, parallelepiped or spherical free-falling, or torsion pendulum
- Spacecraft center-of-gravity (aka no-drag-free) with modeled corrections
- Atom interferometry atoms as proof masses, atoms as secondary inertial reference
- Payload as separated spacecraft

Architecture Choices – Measurement Strategies

- Laser interferometry with laser heterodyne phase comparison – free-space or digital interferometry
- Laser interferometry with atom interferometer phase comparison
- Laser and clock frequency noise correction 3 spacecraft & TDI, or very much better phase reference (AI)

EMRI Horizons

Fiducial System: $10 M_{\odot}$ compact object, eccentricity 0.5 at 2 years before plunge. Spin 0.5 central BH. Barack-Cutler waveforms. SNR = 15 Threshold.

Preliminary: Neil Cornish, GW Mission CST

EMRI Horizons

Preliminary: Neil Cornish, GW Mission CST

EMRI Detections

Preliminary: Neil Cornish, GW Mission CST

Implementation Strategies

Implementation Strategies

Parameter	SGO Mid	LAGRANGE	OMEGA
Mass Margin	53%	53%	53%
Payload mass (kg), power (W) CBE	216.5 kg, 233 W	99.7 kg, 99.3 W	Option 1: 64.3 kg, 80W; Option 2: 55 kg, 54W
Mass rack-up			
Science-craft type 1	717 kg (3)	531 kg (2)	147 kg (6)
Science-craft type 2		586 kg (1)	
Propulsion Module type 1 +	661 + 139 (3)	224 + 174 (2)	374 + 465.5 (1)
Prop		591 + 114 (1)	
Propulsion module type 2 +	?	32 kg	28 kg
Prop	4553 kg	3182 kg	2347 kg
LV Adapter			
Launch Mass Wei			
Launch Vehicle	Atlas V 551; 6075 kg	Atlas V 511; 3285 kg	Falcon 9 Block 2; 2490 kg

NASA

Team X Costs

- Team-X is very conservative.
- Cost estimates range from \$1.2B to 2.1B.
- Per science year costs
 - SGO-hi \$450M/yr
 - SGO-mid/Lagrange ~\$800-900/yr
 - Omega ~\$1,300M/yr
- Important cost drivers
 - Payload and S/C development, launch vehicle, operations: all relevant (modest) cost levers
 - Non-recurring costs (NRE) and recurring costs (RE) are important.
 - Serial vs parallel construction of multiple units (~ \$150M/yr)
 - The details matter

- These are a combination of Team-X and Core Team risks.
- Risk rises rapidly with modest (<10%) cost reductions.
- SGO-Mid considered "very low risk" by TeamX
- This assessment is not complete.

US Study: incomplete results

- The CST prefers SGO-Mid (3 arms, LISA-like, 1 Mkm, drift-away).
 - Represents a cost-science trade from LISA
 - Concepts with lower cost ests. incur new risk
- Big Questions
 - We found no concepts at \$300M, \$600M or \$1B.
 - The lowest cost GW mission is \sim \$1.4B (±0.2).
 - We found no game-changing technology that hasn't been adequately considered.
- Heliocentric is a better choice than geocentric.
- No-drag-free achieves only modest savings while incurring substantial risk. [Cost model is uncertain.]
- Science:long-baseline and geocentric concepts have mitigating MBH+MBH parameter estimation effects

U.S. LISA outlook

- LISA science is still a high NASA priority
- Next major mission in Astrophysics starts after 2018.
- The Astrophysics Division anticipates that a "probeclass" mission could be started ~2017.
- The Division will <u>not</u> commit to a 'large' mission until after Astro2020. 'Commit' means the Confirmation Review at the end of Phase B.
- A partnership with ESA seems most likely. That would require:
 - Rebuilding a partnership
 - Reliably coordinating two agencies' programs
 - US investment in LISA science and technology would need to grow soon.

LISA 2011-2012: Japan

- (based on LISA Symposium talks)
- Japan is pursuing most/all areas of LISA technology
- Primary concept is DECIGO:
 - viewed as post-LISA (2030s?)
 - higher-freq deci-Hz band
- DECIGO Pathfinder:
 - LPF-like tests on a small satellite
 - Considered a strong candidate in coming smallmission call
- (unofficially) Japan could be interested in contributing to an international LISA-like mission

LISA 2011-2012: China

- (based on talks at Paris LISA Symposium)
- "Space Science and Technology in China: A Roadmap to 2050"
 - Chin. Acad. of Sci. document (2010)
 - Strategic Goal 1: includes...
 - directly detecting black holes
 - gravitational waves
- Nat'l Space Science Center (est 2011): Space Science Strategy Pioneer Project
 - incl series of space-projects leading to a future LISAlike mission
 - Step 1 2011-2015: ground studies
 - Step 2 2016-2020: pending, space technology?

LISA 2011-2012: China

- Gravitational wave mission studies
 - 2008–2010: Feasibility studies based on ALIA concept (Bender 2005). "cLISA"
 - 2010-2012: Preliminary engineering studies
 - 2011-2015: Program of experimental and theoretical studies in key areas of science and technology. Accepted as part of national program in 2011. Seems to have significant funds.
- GW detection group:
 - includes 8 universities, research centers, and aerospace co.
 - addressing a full range of topics related to LISA science and technology

LISA 2011-2012: China

- cLISA concept
 - viewed as a post-LISA (>2030?) concept
 - moderately improve over LISA sens on high-freq side and lower floor
 - emphasis includes IMRIs
 - appears promising for EMRIs too
- China looking for international partnerships

LISA Prospects

- Status
 - Great strides have been made in LISA technology and science
 - Over \$1 billion probably invested already
 - Strong momentum in Europe
 - Growing worldwide investment/interest:EU,US,Japan,China,India?
- Coming events:
 - LISA Pathfinder results in 2015 should mitigate persisting concerns about technical novelty
 - Ground-based detections should ease concerns about conceptual novelty
- The future LISA
 - LISA: Now refers to the general class of LISA-like missions
 - Competition for (scarce ??!) funds in US and Europe
 - No mission likely to launch before 2025 (ie start before 2018)
 - We now understand a larger variety of LISA-like mission options
 - A Europe-led international collaboration seems promising for launch in late 2020s
 - Work must begin now to prepare a international joint concept for competition later this decade!
 - Next LISA Symposium: Florida 2014