Self-consistent motion of a scalar charge around a Schwarzschild black hole

Ian Vega ${ }^{1}$ Peter Diener ${ }^{2} \quad$ Barry Wardell ${ }^{3}$ Steve Detweiler ${ }^{4}$
${ }^{1}$ University of Guelph
${ }^{2}$ Louisiana State University
${ }^{3}$ University College Dublin
${ }^{4}$ University of Florida

12 June 2012
15th Capra Meeting on Radiation Reaction in General Relativity
College Park, Maryland

The problem

We wish to determine the self-forced motion and field (e.g. energy fluxes) of a particle.

2 general approaches:

- Compute enough "geodesic"-based self-forces and then use this to drive the motion of the particle. (Post-processing, fast, accurate self-forces, relies on adiabaticity)
- Compute the "true" self-force while simultaneously driving the motion. (Slow and expensive, less accurate self-forces)

Effective source approach

... is a general approach to self-force and self-consistent orbital evolution that doesn't use any delta functions.

Key ideas

- Compute a regular field, ψ^{R}, such that

$$
\text { (self-force) } \propto \nabla \psi^{\mathrm{R}}
$$

where $\psi^{\mathrm{R}}=\psi^{\text {ret }}-\psi^{\mathrm{S}}$, and ψ^{S} can be approximated via local expansions.

- The effective source, S, for the field equation for ψ^{R} is regular at the particle location.

$$
\square \psi^{\mathrm{R}}=S(x \mid z, u)
$$

where $S:=\delta-\square \psi^{\mathrm{S}}$

Effective source approach

Evolve the coupled particle-field dynamics:

$$
\begin{aligned}
\square \psi^{\mathrm{R}} & =S(x \mid z(\tau), u(\tau)) \\
\frac{D u^{\alpha}}{d \tau} & =\frac{q}{m(\tau)}\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right) \nabla_{\beta} \psi^{\mathrm{R}} \\
\frac{d m}{d \tau} & =-q u^{\beta} \nabla_{\beta} \psi^{\mathrm{R}}
\end{aligned}
$$

Effective source

- For constructing $S(x \mid z(\tau), u(\tau))$, we make use of the Haas-Poisson coordinate expression for the singular field. This has the form

$$
\tilde{\Phi}_{\mathrm{S}}=\frac{a_{(2)}+a_{(3)}+a_{(4)}+a_{(5)}}{\left(b_{(2)}+b_{(3)}+b_{(4)}+b_{(5)}\right)^{3 / 2}}
$$

where $a_{(n)}=a_{\alpha_{1} \cdots \alpha_{n}} \Delta x^{\alpha_{1}} \cdots \Delta x^{\alpha_{n}}$ The coefficients $a_{\alpha_{1} \cdots \alpha_{n}}$ contain all the worldline dependencies of the effective source, such as position, velocity and acceleration. $S=\square \tilde{\Phi}_{\mathrm{S}}$.

- We set all acceleration terms to zero.
- To render the expression more manageable, we reexpand the denominator, keeping only the $O\left(\Delta x^{2}\right)$ dependence.
- We apply the d'Alembertian after substituting the particle's position and velocity.
- To make the source have compact spatial support, we make use of a smooth window function in r and θ.

"Geodesic" self-force with an effective source

Solve the wave equation for a specified fixed geodesic; compute gradient of ψ^{R} :

$$
\begin{aligned}
\square \psi^{\mathrm{R}} & =S\left(x \mid z_{0}(\tau), u_{0}(\tau)\right) \\
F^{\alpha} & =q\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right) \nabla_{\beta} \psi^{\mathrm{R}}
\end{aligned}
$$

Comparison with $(1+1)$ results

$$
e=0.5, p=7.2
$$

Comparison with $(1+1)$ results

$$
e=0.5, p=7.2
$$

Self-force accuracy: worst case $\sim 2 \%$

Ignoring acceleration terms: Are we still faithful to the Quinn-Wald equation?

In principle, the effective source depends on the acceleration of the particle, but we choose to set all acceleration terms to zero.

$$
S\left(x \mid x_{0}, u_{0}, a_{0}, \dot{a}_{0}, \ddot{a}_{0}, \ldots\right) \Longrightarrow S\left(x \mid x_{0}, u_{0}, a_{0}=0, \ldots\right)
$$

What this means is that the equations we solve are approximations to the Quinn-Wald equations of motion for a scalar charge.

Because test-particle motion (zeroth order in q) is geodesic in our case, the acceleration terms enter at order $O\left(q^{2}\right)$.

This means that we are ignoring contributions to the self-force of order $O\left(q^{3}\right)$.

Self-forced orbit

$e-p$ parametrization of the motion

- A bound orbit can be specified by its eccentricity (e) and semi-latus rectum (p):

$$
r_{1}=\frac{p M}{1+e}, \quad r_{2}=\frac{p M}{1-e}
$$

where r_{1} and r_{2} are the turning points of the radial motion.

- $e=0$, stable circular orbits
$p=6+2 e$, (separatrix), unstable circular orbits
$0 \leq e<1, p \geq 6+2 e$, bound orbit

Self-forced orbit: $e-p$ space

Some features: p monotonically decreases, while e oscillates. e decreases secularly far from the separatrix (e.g. weak field regime), but then enters an increasing phase as the particle nears plunge.

Self-forced evolution in $e-p$ space for an orbit starting at $p=7.2, e=0.5$ (left plot) and $p=10.0, e=0.1$ (right plot).

Evolution code

- A 3D multi-block scalar wave equation code.
- Kerr background spacetime in Kerr-Schild coordinates.
- Spherical inner boundary placed inside the black

Equations:

$$
\begin{aligned}
\square \psi^{\mathrm{R}} & =S\left(x \mid z^{\alpha}(\tau), u^{\alpha}(\tau)\right) \\
\frac{D u^{\alpha}}{d \tau} & =\frac{q}{m(\tau)}\left(g^{\alpha \beta}+u^{\alpha} u^{\beta}\right) \nabla_{\beta} \psi^{\mathrm{R}} \\
\frac{d m}{d \tau} & =-q u^{\beta} \nabla_{\beta} \psi^{\mathrm{R}}
\end{aligned}
$$ hole.

- The field and the particle are evolved together.
- The particle location $z^{\alpha}(\tau)$ and four-velocity $u^{\alpha}(\tau)$ gives the effective source that determines ψ^{R}.
- $\nabla_{\beta} \psi^{\mathrm{R}}$ at the location of the particle in turn affects the orbit.
- We use 8th order summation by parts finite differencing and penalty boundary conditions at patch boundaries.
- We can evolve the orbit using the geodesic equations directly as well as using the osculating orbits framework.

Hyperboloidal slicing

We compactify in the radial direction

$$
r=\frac{\rho}{\Omega}, \quad \text { with } \quad \Omega=\Omega(\rho)
$$

Where $r \rightarrow \infty$ corresponds to $\Omega=1-\rho / S=0$.
In addition we perform a transformation of the time coordinate

$$
\tau=t-h(r)
$$

in order to have the spatial slices asymptote to \mathscr{I}^{+}.
Choosing $H=d h / d r$ as

$$
H=1+\frac{4 M \Omega}{\rho}+\frac{\left(8 M^{2}-C^{2}\right) \Omega^{2}}{\rho^{2}}
$$

ensures that the metric is regular at $\rho=S$ and that the characteristic speeds at $\rho=S$ are

$$
c_{-}=0, \quad c_{+}=S^{2} / C^{2}
$$

Hyperboloidal slicing

We still want to use standard spatial slices in the interior so we use a smooth transition

$$
\begin{gathered}
\Omega(\rho)= \begin{cases}1 & \text { for } \quad \rho \leq \rho_{\mathrm{int}} \\
1-f+(1-\rho / S) f & \text { for } \\
1-\rho / S & \rho_{\mathrm{int}}<\rho<\rho_{\mathrm{ext}} \\
\text { for } & \rho \geq \rho_{\mathrm{ext}}\end{cases} \\
H(\rho)=d h / d r= \begin{cases}0 & \text { for } \rho \leq \rho_{\mathrm{int}} \\
\left(1+\frac{4 M \Omega}{\rho}+\frac{\left(8 M^{2}-C^{2}\right) \Omega^{2}}{\rho^{2}}\right) f & \text { for } \quad \rho_{\mathrm{int}}<\rho<\rho_{\mathrm{ext}} . \\
1+\frac{4 M \Omega}{\rho}+\frac{\left(8 M^{2}-C^{2}\right) \Omega^{2}}{\rho^{2}} & \text { for } \rho \geq \rho_{\mathrm{ext}}\end{cases}
\end{gathered}
$$

Here $f=0$ for $\rho \leq \rho_{\mathrm{int}}, f=1$ for $\rho \geq \rho_{\mathrm{ext}}$ and f varies smoothly from 0 to 1 between $\rho_{\text {int }}$ and $\rho_{\text {ext }}$.
We typically use $S=C=100 M, \rho_{\text {int }}=25 M$ and $\rho_{\text {ext }}=85 M$.
We can extract waveforms and energy fluxes at \mathscr{I}^{+}.
We have no problems with contaminations from our boundaries (outer or inner).

Waveform at $\mathscr{I}^{+}(e=0.5$ and $p=7.2)$

Waveform at $\mathscr{I}^{+}(e=0.5$ and $p=7.2)$

Waveform at $\mathscr{I}^{+}(e=0.5$ and $p=7.2)$

Waveform at $\mathscr{I}^{+}(e=0.5$ and $p=7.2)$

Energy flux through horizon ($e=0.5$ and $p=7.2$)

Energy flux through horizon ($e=0.5$ and $p=7.2$)

Energy flux through horizon ($e=0.5$ and $p=7.2$)

Energy flux through horizon ($e=0.5$ and $p=7.2$)

Waveform at $\mathscr{I}^{+}(e=0.1$ and $p=10)$

Energy flux through $\mathscr{I}^{+}(e=0.1$ and $p=10)$

Movie $(e=0.5, p=7.2, q=1 / 32)$

Conclusions and future work

Conclusions

- We have computed the first self-consistent evolutions and waveforms of a scalar charge in orbit around Schwarzschild.
- The code is robust, well parallelized and fully generic.
- The main limitations are the expense of evaluating the effective source and the cost of evolving in 3D.
Future work.
- We plan to do self-consistent orbits in Kerr.
- We would like to compare evolutions based on the geodesic self-force.
- The extension of the method to the gravitational case is underway.

