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The problem

We wish to determine the self-forced motion and field (e.g. energy

fluxes) of a particle.

2 general approaches:

I Compute enough “geodesic”-based self-forces and then use this to
drive the motion of the particle. (Post-processing, fast, accurate
self-forces, relies on adiabaticity)

I Compute the “true” self-force while simultaneously driving the
motion. (Slow and expensive, less accurate self-forces)



Effective source approach ...

... is a general approach to self-force and self-consistent orbital
evolution that doesn’t use any delta functions.

Key ideas

I Compute a regular field, ψR, such that

(self-force) ∝ ∇ψR

where ψR = ψret − ψS, and ψS can be approximated via local
expansions.

I The effective source, S, for the field equation for ψR is regular at
the particle location.

�ψR = S(x|z, u)

where S := δ −�ψS



Effective source approach

Evolve the coupled particle-field dynamics:

�ψR = S(x|z(τ), u(τ))

Duα

dτ
=

q

m(τ)
(gαβ + uαuβ)∇βψR

dm

dτ
= −quβ∇βψR



Effective source

I For constructing S(x|z(τ), u(τ)), we make use of the Haas-Poisson
coordinate expression for the singular field. This has the form

Φ̃S =
a(2) + a(3) + a(4) + a(5)

(b(2) + b(3) + b(4) + b(5))3/2

where a(n) = aα1···αn
∆xα1 · · ·∆xαn The coefficients aα1···αn

contain all the worldline dependencies of the effective source, such

as position, velocity and acceleration. S = �Φ̃S.

I We set all acceleration terms to zero.

I To render the expression more manageable, we reexpand the

denominator, keeping only the O(∆x2) dependence.

I We apply the d’Alembertian after substituting the particle’s position

and velocity.

I To make the source have compact spatial support, we make use of a

smooth window function in r and θ.



“Geodesic” self-force with an effective source

Solve the wave equation for a specified fixed geodesic; compute
gradient of ψR:

�ψR = S(x|z0(τ), u0(τ))

Fα = q(gαβ + uαuβ)∇βψR



Comparison with (1+1) results
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Comparison with (1+1) results
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Self-force accuracy: worst case ∼ 2%
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Ignoring acceleration terms: Are we still faithful to the
Quinn-Wald equation?

In principle, the effective source depends on the acceleration of the
particle, but we choose to set all acceleration terms to zero.

S(x|x0, u0, a0, ȧ0, ä0, . . .) =⇒ S(x|x0, u0, a0 = 0, . . .)

What this means is that the equations we solve are approximations to the
Quinn-Wald equations of motion for a scalar charge.

Because test-particle motion (zeroth order in q) is geodesic in our case,
the acceleration terms enter at order O(q2).

This means that we are ignoring contributions to the self-force of order

O(q3).



Self-forced orbit
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e-p parametrization of the motion

10 20 30 40 50

I A bound orbit can be specified by its eccentricity (e) and semi-latus
rectum (p):

r1 =
pM

1 + e
, r2 =

pM

1− e
where r1 and r2 are the turning points of the radial motion.

I e = 0, stable circular orbits
p = 6 + 2e, (separatrix), unstable circular orbits
0 ≤ e < 1, p ≥ 6 + 2e, bound orbit



Self-forced orbit: e-p space

Some features: p monotonically decreases, while e oscillates. e
decreases secularly far from the separatrix (e.g. weak field regime),
but then enters an increasing phase as the particle nears plunge.
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Evolution code

I A 3D multi-block scalar
wave equation code.

I Kerr background
spacetime in Kerr-Schild
coordinates.

I Spherical inner boundary
placed inside the black
hole.

Equations:

�ψR = S(x|zα(τ), uα(τ)),

Duα

dτ
=

q

m(τ)

(
gαβ + uαuβ

)
∇βψR,

dm

dτ
= −quβ∇βψR.

I The field and the particle are evolved together.
I The particle location zα(τ) and four-velocity uα(τ) gives the

effective source that determines ψR.
I ∇βψR at the location of the particle in turn affects the orbit.

I We use 8th order summation by parts finite differencing and
penalty boundary conditions at patch boundaries.

I We can evolve the orbit using the geodesic equations directly
as well as using the osculating orbits framework.



Hyperboloidal slicing

We compactify in the radial direction

r =
ρ

Ω
, with Ω = Ω(ρ).

Where r →∞ corresponds to Ω = 1− ρ/S = 0.
In addition we perform a transformation of the time coordinate

τ = t− h(r)

in order to have the spatial slices asymptote to I +.
Choosing H = dh/dr as

H = 1 +
4MΩ

ρ
+

(8M2 − C2)Ω2

ρ2

ensures that the metric is regular at ρ = S and that the
characteristic speeds at ρ = S are

c− = 0, c+ = S2/C2.



Hyperboloidal slicing

We still want to use standard spatial slices in the interior so we use
a smooth transition

Ω(ρ) =


1 for ρ ≤ ρint

1− f + (1− ρ/S)f for ρint < ρ < ρext

1− ρ/S for ρ ≥ ρext

,

H(ρ) = dh/dr =


0 for ρ ≤ ρint(

1 + 4MΩ
ρ + (8M2−C2)Ω2

ρ2

)
f for ρint < ρ < ρext

1 + 4MΩ
ρ + (8M2−C2)Ω2

ρ2
for ρ ≥ ρext

.

Here f = 0 for ρ ≤ ρint, f = 1 for ρ ≥ ρext and f varies smoothly
from 0 to 1 between ρint and ρext.
We typically use S = C = 100M , ρint = 25M and ρext = 85M .
We can extract waveforms and energy fluxes at I +.
We have no problems with contaminations from our boundaries
(outer or inner).



Waveform at I + (e = 0.5 and p = 7.2)

-0.001

 0.003

 0.007

 0.011

 0.015

 0  1000  2000  3000  4000  5000

Φ
 / 

q

Time (M)

q=1/8



Waveform at I + (e = 0.5 and p = 7.2)
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Waveform at I + (e = 0.5 and p = 7.2)
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Waveform at I + (e = 0.5 and p = 7.2)
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Energy flux through I + (e = 0.5 and p = 7.2)
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Energy flux through I + (e = 0.5 and p = 7.2)
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Energy flux through I + (e = 0.5 and p = 7.2)
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Energy flux through I + (e = 0.5 and p = 7.2)
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Energy flux through horizon (e = 0.5 and p = 7.2)
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Energy flux through horizon (e = 0.5 and p = 7.2)
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Energy flux through horizon (e = 0.5 and p = 7.2)
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Energy flux through horizon (e = 0.5 and p = 7.2)
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Waveform at I + (e = 0.1 and p = 10)
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Waveform at I + (e = 0.1 and p = 10)
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Waveform at I + (e = 0.1 and p = 10)
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Waveform at I + (e = 0.1 and p = 10)
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Energy flux through I + (e = 0.1 and p = 10)
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Energy flux through I + (e = 0.1 and p = 10)
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Energy flux through I + (e = 0.1 and p = 10)
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Energy flux through I + (e = 0.1 and p = 10)

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0  2000  4000  6000  8000  10000  12000  14000

(d
E

/d
t)

/q
2

Time (M)

q=1 q=1/2 q=1/4 q=1/8



Movie (e = 0.5, p = 7.2, q = 1/32)



Conclusions and future work

Conclusions

I We have computed the first self-consistent evolutions and
waveforms of a scalar charge in orbit around Schwarzschild.

I The code is robust, well parallelized and fully generic.

I The main limitations are the expense of evaluating the
effective source and the cost of evolving in 3D.

Future work.

I We plan to do self-consistent orbits in Kerr.

I We would like to compare evolutions based on the geodesic
self-force.

I The extension of the method to the gravitational case is
underway.


