Eccentric orbits on Schwarzschild:
 Transforming metric perturbations from Regge-Wheeler to Lorenz gauge

Seth Hopper (with Charles Evans)

Albert Einstein Institute
June 13, 2012

Outline

Choosing a gauge and solving the Einstein equations

Transforming from Regge-Wheeler to Lorenz gauge

Odd-parity gauge transformation

Even-parity gauge transformation

Conclusions

Outline

Choosing a gauge and solving the Einstein equations

Transforming from Regge-Wheeler to Lorenz gauge

Odd-parity gauge transformation

Even-parity gauge transformation

Conclusions

Choosing a gauge

- In GR, gauge freedom is coordinate freedom
- At lowest order, we use Schwarzschild coordinates
- At first order, we choose between Regge-Wheeler and Lorenz gauge
- We choose RW gauge and transform our solutions to Lorenz gauge

Choosing a gauge

- In GR, gauge freedom is coordinate freedom
- At lowest order, we use Schwarzschild coordinates
- At first order, we choose between Regge-Wheeler and Lorenz gauge
- We choose RW gauge and transform our solutions to Lorenz gauge

Choosing a gauge

- In GR, gauge freedom is coordinate freedom
- At lowest order, we use Schwarzschild coordinates
- At first order, we choose between Regge-Wheeler and Lorenz gauge

Regge-Wheeler gauge	Lorenz gauge
Algebraic gauge	Differential gauge
(set components to vanish)	with residual freedom
2 equations for each	10 equations for each
harmonic mode	harmonic mode
Solutions are	Solutions are
$C^{-1} /$ singular at particle	C^{0} at particle
Asymptotically grows	Asymptotically flat
	Regularization procedure
	\& Eqs. of motion

Choosing a gauge

- In GR, gauge freedom is coordinate freedom
- At lowest order, we use Schwarzschild coordinates
- At first order, we choose between Regge-Wheeler and Lorenz gauge

Regge-Wheeler gauge	Lorenz gauge
Algebraic gauge	Differential gauge
(set components to vanish)	with residual freedom
2 equations for each	10 equations for each
harmonic mode	harmonic mode
Solutions are	Solutions are
$C^{-1} /$ singular at particle	C^{0} at particle
Asymptotically grows	Asymptotically flat
	Regularization procedure
	\& Eqs. of motion

Choosing a gauge

- In GR, gauge freedom is coordinate freedom
- At lowest order, we use Schwarzschild coordinates
- At first order, we choose between Regge-Wheeler and Lorenz gauge

Regge-Wheeler gauge	Lorenz gauge
Algebraic gauge	Differential gauge
(set components to vanish)	with residual freedom
2 equations for each	10 equations for each
harmonic mode	harmonic mode
Solutions are	Solutions are
$C^{-1} /$ singular at particle	C^{0} at particle
Asymptotically grows	Asymptotically flat
	Regularization procedure
	\& Eqs. of motion

Choosing a gauge

- In GR, gauge freedom is coordinate freedom
- At lowest order, we use Schwarzschild coordinates
- At first order, we choose between Regge-Wheeler and Lorenz gauge

Regge-Wheeler gauge	Lorenz gauge
Algebraic gauge	Differential gauge
(set components to vanish)	with residual freedom
2 equations for each	10 equations for each
harmonic mode	harmonic mode
Solutions are	Solutions are
$C^{-1} /$ singular at particle	C^{0} at particle
Asymptotically grows	Asymptotically flat
	Regularization procedure
	\& Eqs. of motion

Choosing a gauge

- In GR, gauge freedom is coordinate freedom
- At lowest order, we use Schwarzschild coordinates
- At first order, we choose between Regge-Wheeler and Lorenz gauge

Regge-Wheeler gauge	Lorenz gauge
Algebraic gauge	Differential gauge
(set components to vanish)	with residual freedom
2 equations for each	10 equations for each
harmonic mode	harmonic mode
Solutions are	Solutions are
$C^{-1} /$ singular at particle	C^{0} at particle
Asymptotically grows	Asymptotically flat
	Regularization procedure
	\& Eqs. of motion

Choosing a gauge

- In GR, gauge freedom is coordinate freedom
- At lowest order, we use Schwarzschild coordinates
- At first order, we choose between Regge-Wheeler and Lorenz gauge

Regge-Wheeler gauge	Lorenz gauge
Algebraic gauge	Differential gauge
(set components to vanish)	with residual freedom
2 equations for each	10 equations for each
harmonic mode	harmonic mode
Solutions are	Solutions are
$C^{-1} /$ singular at particle	C^{0} at particle
Asymptotically grows	Asymptotically flat
$?$	Regularization procedure
	\& Eqs. of motion

Choosing a gauge

- In GR, gauge freedom is coordinate freedom
- At lowest order, we use Schwarzschild coordinates
- At first order, we choose between Regge-Wheeler and Lorenz gauge

Regge-Wheeler gauge	Lorenz gauge
Algebraic gauge	Differential gauge
(set components to vanish)	with residual freedom
2 equations for each	10 equations for each
harmonic mode	harmonic mode
Solutions are	Solutions are
$C^{-1} /$ singular at particle	C^{0} at particle
Asymptotically grows	Asymptotically flat
$?$	Regularization procedure
	\& Eqs. of motion

- We choose RW gauge and transform our solutions to Lorenz gauge

Fourier convergence of the master functions

Standard method

Extended homogeneous solutions

$$
\Psi_{\ell m}\left(t_{p}, r\right)=\sum_{n=-3}^{3} R_{\ell m n}(r) e^{-i \omega t}
$$

Fourier convergence of the master functions

Standard method

Extended homogeneous solutions

$$
\Psi_{\ell m}\left(t_{p}, r\right)=\sum_{n=-5}^{5} R_{\ell m n}(r) e^{-i \omega t}
$$

Fourier convergence of the master functions

Standard method

Extended homogeneous solutions

$$
\begin{aligned}
p & =7.50478 \\
e & =0.188917 \\
t & =80.62 M
\end{aligned}
$$

$$
\Psi_{\ell m}\left(t_{p}, r\right)=\sum_{n=-8}^{8} R_{\ell m n}(r) e^{-i \omega t}
$$

Fourier convergence of the master functions

Standard method

Extended homogeneous solutions

$$
\begin{aligned}
p & =7.50478 \\
e & =0.188917 \\
t & =80.62 M
\end{aligned}
$$

$$
\Psi_{\ell m}\left(t_{p}, r\right)=\sum_{n=-10}^{10} R_{\ell m n}(r) e^{-i \omega t}
$$

Fourier convergence of the master functions

Standard method

Extended homogeneous solutions

$$
\begin{aligned}
p & =7.50478 \\
e & =0.188917 \\
t & =80.62 M
\end{aligned}
$$

$$
\Psi_{\ell m}\left(t_{p}, r\right)=\sum_{n=-12}^{12} R_{\ell m n}(r) e^{-i \omega t}
$$

Fourier convergence of the master functions

Standard method

Extended homogeneous solutions

$$
\begin{aligned}
p & =7.50478 \\
e & =0.188917 \\
t & =80.62 M
\end{aligned}
$$

$$
\Psi_{\ell m}\left(t_{p}, r\right)=\sum_{n=-14}^{14} R_{\ell m n}(r) e^{-i \omega t}
$$

Metric perturbation reconstruction

$$
p_{\mu \nu}^{21}(80.62 M, r)
$$

$$
p_{\mu \nu}^{22}(80.62 M, r)
$$

$$
\begin{aligned}
p & =7.50478 \\
e & =0.188917 \\
t & =80.62 M
\end{aligned}
$$

- 3 of 4 even parity metric perturbations are singular.
- We compute analytical values of those singularities as funcs of t.

Outline

Choosing a gauge and solving the Einstein equations

Transforming from Regge-Wheeler to Lorenz gauge

Odd-parity gauge transformation

Even-parity gauge transformation

Conclusions

Transforming to Lorenz gauge

- Gauge transformation from Regge-Wheeler (RW) to Lorenz (L)

$$
x_{\mathrm{RW}}^{\mu} \rightarrow x_{\mathrm{L}}^{\mu}=x_{\mathrm{RW}}^{\mu}+\Xi^{\mu}, \quad\left|\Xi^{\mu}\right| \sim\left|p_{\mu \nu}\right| \ll 1
$$

- Metric perturbation transforms as

$$
p_{\mu \nu}^{\mathrm{RW}} \rightarrow p_{\mu \nu}^{\mathrm{T}}=p_{\mu \nu}^{\mathrm{RW}}-\Xi_{\mu \mid \nu}-\Xi_{\nu \mid \mu}
$$

- Demand $p_{\mu \nu}^{\mathrm{L}}$ satisfy the Lorenz gauge condition, $\bar{p}_{\mu \nu}^{\mathrm{L}} \mid \nu=0$
- Therefore

$$
\Xi_{\mu \mid \nu}^{\nu}=p_{\mu \nu}^{\mathrm{RW} \mid \nu}-\frac{1}{2} g^{\alpha \beta} p_{\alpha \beta \mid \mu}^{\mathrm{RW}}
$$

Transforming to Lorenz gauge

- Gauge transformation from Regge-Wheeler (RW) to Lorenz (L)

$$
x_{\mathrm{RW}}^{\mu} \rightarrow x_{\mathrm{L}}^{\mu}=x_{\mathrm{RW}}^{\mu}+\Xi^{\mu}, \quad\left|\Xi^{\mu}\right| \sim\left|p_{\mu \nu}\right| \ll 1
$$

- Metric perturbation transforms as

$$
p_{\mu \nu}^{\mathrm{RW}} \rightarrow p_{\mu \nu}^{\mathrm{L}}=p_{\mu \nu}^{\mathrm{RW}}-\Xi_{\mu \mid \nu}-\Xi_{\nu \mid \mu}
$$

- Demand $p_{\mu \nu}^{\mathrm{L}}$ satisfy the Lorenz gauge condition, $\bar{p}_{\mu \nu}^{\mathrm{L}}{ }^{\mid \nu}=0$
- Therefore

Transforming to Lorenz gauge

- Gauge transformation from Regge-Wheeler (RW) to Lorenz (L)

$$
x_{\mathrm{RW}}^{\mu} \rightarrow x_{\mathrm{L}}^{\mu}=x_{\mathrm{RW}}^{\mu}+\Xi^{\mu}, \quad\left|\Xi^{\mu}\right| \sim\left|p_{\mu \nu}\right| \ll 1
$$

- Metric perturbation transforms as

$$
p_{\mu \nu}^{\mathrm{RW}} \rightarrow p_{\mu \nu}^{\mathrm{L}}=p_{\mu \nu}^{\mathrm{RW}}-\Xi_{\mu \mid \nu}-\Xi_{\nu \mid \mu}
$$

- Demand $p_{\mu \nu}^{\mathrm{L}}$ satisfy the Lorenz gauge condition, $\bar{p}_{\mu \nu}^{\mathrm{L}} \mid \nu=0$
- Therefore

Transforming to Lorenz gauge

- Gauge transformation from Regge-Wheeler (RW) to Lorenz (L)

$$
x_{\mathrm{RW}}^{\mu} \rightarrow x_{\mathrm{L}}^{\mu}=x_{\mathrm{RW}}^{\mu}+\Xi^{\mu}, \quad\left|\Xi^{\mu}\right| \sim\left|p_{\mu \nu}\right| \ll 1
$$

- Metric perturbation transforms as

$$
p_{\mu \nu}^{\mathrm{RW}} \rightarrow p_{\mu \nu}^{\mathrm{L}}=p_{\mu \nu}^{\mathrm{RW}}-\Xi_{\mu \mid \nu}-\Xi_{\nu \mid \mu}
$$

- Demand $p_{\mu \nu}^{\mathrm{L}}$ satisfy the Lorenz gauge condition, $\bar{p}_{\mu \nu}^{\mathrm{L}} \mid \nu=0$
- Therefore

$$
\Xi_{\mu \mid \nu}^{\nu}=p_{\mu \nu}^{\mathrm{RW} \mid \nu}-\frac{1}{2} g^{\alpha \beta} p_{\alpha \beta \mid \mu}^{\mathrm{RW}}
$$

Equations for the gauge generator amplitudes

- Decompose gauge vector Ξ_{μ} in scalar and vector harmonics

$$
\begin{aligned}
\Xi_{t} & =\xi_{t}^{\ell m}(t, r) Y^{\ell m} \\
\Xi_{r} & =\xi_{r}^{\ell m}(t, r) Y^{\ell m} \\
\Xi_{A} & =\xi_{(e)}^{\ell m}(t, r) Y_{A}^{\ell m}+\xi_{(o)}^{\ell m}(t, r) X_{A}^{\ell m}
\end{aligned}
$$

- One, separate odd-parity wave equation

- Three, coupled even-parity wave equations

$$
\square \xi_{t}^{\ell_{m}}+M_{t}\left(\xi_{t}, \xi_{r}\right)=F_{t}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular term }
$$

Equations for the gauge generator amplitudes

- Decompose gauge vector Ξ_{μ} in scalar and vector harmonics

$$
\begin{aligned}
\Xi_{t} & =\xi_{t}^{\ell m}(t, r) Y^{\ell m} \\
\Xi_{r} & =\xi_{r}^{\ell m}(t, r) Y^{\ell m} \\
\Xi_{A} & =\xi_{(e)}^{\ell m}(t, r) Y_{A}^{\ell m}+\xi_{(o)}^{\ell m}(t, r) X_{A}^{\ell m}
\end{aligned}
$$

- One, separate odd-parity wave equation

$$
\frac{1}{f}\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{(o)}^{\ell m}=2 \frac{f}{r} h_{r}^{\ell m}+p_{\ell m} \delta\left[r-r_{p}(t)\right]
$$

- Three, coupled even-parity wave equations

Equations for the gauge generator amplitudes

- Decompose gauge vector Ξ_{μ} in scalar and vector harmonics

$$
\begin{aligned}
\Xi_{t} & =\xi_{t}^{\ell m}(t, r) Y^{\ell m} \\
\Xi_{r} & =\xi_{r}^{\ell m}(t, r) Y^{\ell m} \\
\Xi_{A} & =\xi_{(e)}^{\ell m}(t, r) Y_{A}^{\ell m}+\xi_{(o)}^{\ell m}(t, r) X_{A}^{\ell m}
\end{aligned}
$$

- One, separate odd-parity wave equation

$$
\frac{1}{f}\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{(o)}^{\ell m}=2 \frac{f}{r} h_{r}^{\ell m}+p_{\ell m} \delta\left[r-r_{p}(t)\right]
$$

- Three, coupled even-parity wave equations

$$
\begin{gathered}
\square \xi_{t}^{\ell m}+M_{t}\left(\xi_{t}, \xi_{r}\right)=F_{t}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular term } \\
\square \xi_{r}^{\ell m}+M_{r}\left(\xi_{r}, \xi_{t}, \xi_{(e)}\right)=F_{r}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular term } \\
\square \xi_{(e)}^{\ell m}+M_{(e)}\left(\xi_{(e)}, \xi_{r}\right)=F_{(e)}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular term }
\end{gathered}
$$

Outline

Choosing a gauge and solving the Einstein equations
 Transforming from Regge-Wheeler to Lorenz gauge

Odd-parity gauge transformation

Even-parity gauge transformation

Conclusions

Partial annihilator method

- An inhomogeneous wave equation

$$
\frac{1}{f}\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{\ell m}=2 \frac{f}{r} h_{r}^{\ell m}+p_{\ell m} \delta\left[r-r_{p}(t)\right]
$$

- Original Regge-Wheeler variable $\Psi^{\ell m}=f h_{r}^{\ell m} / r$
- Satisfies the equation

$$
\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{2}\right] \Psi^{e m}=S_{\mathrm{RW}}
$$

- Act with Regge-Wheeler wave operator on both sides

Partial annihilator method

- An inhomogeneous wave equation

$$
\frac{1}{f}\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{\ell m}=2 \frac{f}{r} h_{r}^{\ell m}+p_{\ell m} \delta\left[r-r_{p}(t)\right]
$$

- Original Regge-Wheeler variable $\Psi^{\ell m}=f h_{r}^{\ell m} / r$
- Satisfies the equation

$$
\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{2}\right] \Psi^{\ell m}=S_{\mathrm{RW}}
$$

- Act with Regge-Wheeler wave operator on both sides

Partial annihilator method

- An inhomogeneous wave equation

$$
\frac{1}{f}\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{\ell m}=2 \frac{f}{r} h_{r}^{\ell m}+p_{\ell m} \delta\left[r-r_{p}(t)\right]
$$

- Original Regge-Wheeler variable $\Psi^{\ell m}=f h_{r}^{\ell m} / r$
- Satisfies the equation

$$
\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{2}\right] \Psi^{\ell m}=S_{\mathrm{RW}}
$$

- Act with Regge-Wheeler wave operator on both sides

Partial annihilator method

- An inhomogeneous wave equation

$$
\frac{1}{f}\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{\ell m}=2 \frac{f}{r} h_{r}^{\ell m}+p_{\ell m} \delta\left[r-r_{p}(t)\right]
$$

- Original Regge-Wheeler variable $\Psi^{\ell m}=f h_{r}^{\ell m} / r$
- Satisfies the equation

$$
\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{2}\right] \Psi^{\ell m}=S_{\mathrm{RW}}
$$

- Act with Regge-Wheeler wave operator on both sides

$$
\begin{aligned}
{\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{2}\right] \frac{1}{f}\left[-\frac{\partial^{2}}{\partial t^{2}}\right.} & \left.+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{\ell m} \\
& =2 S_{\mathrm{RW}}+\text { Other singular terms }
\end{aligned}
$$

Partial annihilator method

- An inhomogeneous wave equation

$$
\frac{1}{f}\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{\ell m}=2 \frac{f}{r} h_{r}^{\ell m}+p_{\ell m} \delta\left[r-r_{p}(t)\right]
$$

- Original Regge-Wheeler variable $\Psi^{\ell m}=f h_{r}^{\ell m} / r$
- Satisfies the equation

$$
\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{2}\right] \Psi^{\ell m}=S_{\mathrm{RW}}
$$

- Act with Regge-Wheeler wave operator on both sides

$$
\begin{aligned}
{\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{2}\right] \frac{1}{f}\left[-\frac{\partial^{2}}{\partial t^{2}}\right.} & \left.+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{\ell m} \\
& =2 S_{\mathrm{RW}}+\text { Other singular terms }
\end{aligned}
$$

- Now a 4th-order PDE, but the source is point-singular

An alternative: 2nd-order solutions

- A method for finding solutions without relying on annihilators
- Consider again

$$
\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{\ell m}=2 f \Psi_{\ell m}^{\mathrm{RW}}+P_{\text {Singular }}
$$

- Or, in the FD:

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}+Z_{\text {singular }}
$$

- The solution to the $Z_{\text {Singular }}$ part can always be found using EHS
- For now consider simply

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

An alternative: 2nd-order solutions

- A method for finding solutions without relying on annihilators
- Consider again

$$
\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{\ell m}=2 f \Psi_{\ell m}^{\mathrm{RW}}+P_{\text {Singular }}
$$

- Or, in the FD:

- The solution to the $Z_{\text {Singular }}$ part can always be found using EHS
- For now consider simply

An alternative: 2nd-order solutions

- A method for finding solutions without relying on annihilators
- Consider again

$$
\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{\ell m}=2 f \Psi_{\ell m}^{\mathrm{RW}}+P_{\text {Singular }}
$$

- Or, in the FD:

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}+Z_{\text {Singular }}
$$

- The solution to the $Z_{\text {Singular }}$ part can always be found using EHS
- For now consider simply

An alternative: 2nd-order solutions

- A method for finding solutions without relying on annihilators
- Consider again

$$
\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{\ell m}=2 f \Psi_{\ell m}^{\mathrm{RW}}+P_{\text {Singular }}
$$

- Or, in the FD:

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}+Z_{\text {Singular }}
$$

- The solution to the $Z_{\text {Singular }}$ part can always be found using EHS
- For now consider simply

An alternative: 2nd-order solutions

- A method for finding solutions without relying on annihilators
- Consider again

$$
\left[-\frac{\partial^{2}}{\partial t^{2}}+\frac{\partial^{2}}{\partial r_{*}^{2}}-V_{1}\right] \xi_{\ell m}=2 f \Psi_{\ell m}^{\mathrm{RW}}+P_{\text {Singular }}
$$

- Or, in the FD:

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}+Z_{\text {Singular }}
$$

- The solution to the $Z_{\text {Singular }}$ part can always be found using EHS
- For now consider simply

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Finding causal solutions

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Finding causal solutions

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Finding causal solutions

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Integrate from
left to right

Finding causal solutions

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Finding causal solutions

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Integrate from right to left

Finding causal solutions

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Integrate from right to left

Finding causal solutions

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Finding causal solutions

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Time domain reconstruction

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Causal solution

- TD reconstruction

$$
\xi(t, r)=\sum_{n} \tilde{\xi}(r) e^{-i \omega t}
$$

- The TD source is discontinuous $\left(C^{-1}\right)$, so the convergence is algebraic $\sim 1 / n^{3}$ at the particle.
- We would like exponential convergence.

Time domain reconstruction

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Causal solution

- TD reconstruction

$$
\xi(t, r)=\sum_{n} \tilde{\xi}(r) e^{-i \omega t}
$$

- The TD source is discontinuous $\left(C^{-1}\right)$, so the convergence is algebraic $\sim 1 / n^{3}$ at the particle.
- We would like exponential convergence.

Time domain reconstruction

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Causal solution

- TD reconstruction

$$
\xi(t, r)=\sum_{n} \tilde{\xi}(r) e^{-i \omega t}
$$

- The TD source is discontinuous $\left(C^{-1}\right)$, so the convergence is algebraic $\sim 1 / n^{3}$ at the particle.
- We would like exponential convergence.

Time domain reconstruction

$$
\left[\frac{d^{2}}{d r_{*}^{2}}+\omega^{2}-V_{1}\right] \tilde{\xi}_{\ell m n}=2 f R_{\ell m n}^{\mathrm{RW}}
$$

Causal solution

- TD reconstruction

$$
\xi(t, r)=\sum_{n} \tilde{\xi}(r) e^{-i \omega t}
$$

- The TD source is discontinuous $\left(C^{-1}\right)$, so the convergence is algebraic $\sim 1 / n^{3}$ at the particle.
- We would like exponential convergence.

Extended particular solutions

- We look for a time domain solution of the form

$$
\xi(t, r)=\xi^{+}(t, r) \theta\left[r-r_{p}(t)\right]+\xi^{-}(t, r) \theta\left[r_{p}(t)-r\right]
$$

- Defined for $r>2 M$

- How do we find $\tilde{\xi}_{p}^{ \pm}(r)$ and $\tilde{\xi}_{h}^{ \pm}(r)$?

Extended particular solutions

- We look for a time domain solution of the form

$$
\xi(t, r)=\xi^{+}(t, r) \theta\left[r-r_{p}(t)\right]+\xi^{-}(t, r) \theta\left[r_{p}(t)-r\right]
$$

- Where

$$
\xi^{ \pm}(t, r)=\xi_{p}^{ \pm}(t, r)+\xi_{h}^{ \pm}(t, r)
$$

- Defined for $r>2 M$

- How do we find $\tilde{\xi}_{p}^{ \pm}(r)$ and $\tilde{\xi}_{h}^{ \pm}(r)$?

Extended particular solutions

- We look for a time domain solution of the form

$$
\xi(t, r)=\xi^{+}(t, r) \theta\left[r-r_{p}(t)\right]+\xi^{-}(t, r) \theta\left[r_{p}(t)-r\right]
$$

- Where

$$
\xi^{ \pm}(t, r)=\xi_{p}^{ \pm}(t, r)+\xi_{h}^{ \pm}(t, r)
$$

- Defined for $r>2 M$

$$
\xi_{p}^{ \pm}(t, r) \equiv \sum_{n} \tilde{\xi}_{p}^{ \pm}(r) e^{-i \omega t}, \quad \xi_{h}^{ \pm}(t, r) \equiv \sum_{n} \tilde{\xi}_{h}^{ \pm}(r) e^{-i \omega t}
$$

- How do we find $\tilde{\xi}_{p}^{ \pm}(r)$ and $\tilde{\xi}_{h}^{ \pm}(r)$?

Extended particular solutions

- We look for a time domain solution of the form

$$
\xi(t, r)=\xi^{+}(t, r) \theta\left[r-r_{p}(t)\right]+\xi^{-}(t, r) \theta\left[r_{p}(t)-r\right]
$$

- Where

$$
\xi^{ \pm}(t, r)=\xi_{p}^{ \pm}(t, r)+\xi_{h}^{ \pm}(t, r)
$$

- Defined for $r>2 M$

$$
\xi_{p}^{ \pm}(t, r) \equiv \sum_{n} \tilde{\xi}_{p}^{ \pm}(r) e^{-i \omega t}, \quad \xi_{h}^{ \pm}(t, r) \equiv \sum_{n} \tilde{\xi}_{h}^{ \pm}(r) e^{-i \omega t}
$$

- How do we find $\tilde{\xi}_{p}^{ \pm}(r)$ and $\tilde{\xi}_{h}^{ \pm}(r)$?

2nd-order EPS summary

- Std. source
- Std. particular solutions: $\tilde{\xi}_{p}^{\infty / H}$
- Causality gives homog. sols: $\sim f e^{-i \omega r_{*}}$
- EHS source
- Fxtender
particular
solutions: $\tilde{\xi}_{p}^{ \pm}$
- Use same
homog.

2nd-order EPS summary

- Std. source
- Std. particular solutions: $\tilde{\xi}_{p}^{\infty / H}$

- EHS source
- Fxtended
particular solutions: $\tilde{\xi}_{p}^{ \pm}$
- Use same
homog.

2nd-order EPS summary

- Std. source
- Std. particular solutions: $\tilde{\xi}_{p}^{\infty / H}$
- Causality gives homog. sols: $\tilde{\xi}_{h}^{ \pm}$
- EHS source
- Fxtender
particular solutions: $\tilde{\xi}_{p}^{ \pm}$
- Use same
homog. sols: $\tilde{\xi}_{h}^{ \pm}$

2nd-order EPS summary

- Std. source
- Std. particular solutions: $\tilde{\xi}_{p}^{\infty / H}$
- Causality gives homog. sols: $\tilde{\xi}_{h}^{ \pm}$
- EHS source
- Extended particular solutions:

2nd-order EPS summary

- Std. source
- Std. particular solutions: $\tilde{\xi}_{p}^{\infty / H}$
- Causality gives homog. sols: $\tilde{\xi}_{h}^{ \pm}$
- EHS source
- Extended particular solutions: $\tilde{\xi}_{p}^{ \pm}$
$\sim e^{i \omega r_{*}}$

2nd-order EPS summary

- Std. source
- Std. particular solutions: $\tilde{\xi}_{p}^{\infty / H}$
- Causality gives homog. sols: $\tilde{\xi}_{h}^{ \pm}$
- EHS source
- Extended particular solutions: $\tilde{\xi}_{p}^{ \pm}$
- Use same

homog. sols: $\tilde{\xi}_{h}^{ \pm}$

2nd-order EPS summary

- Std. source
- Std. particular solutions: $\tilde{\xi}_{p}^{\infty / H}$
- Causality gives
homog. sols: $\tilde{\xi}_{h}^{ \pm}$
- EHS source
- Extended particular solutions: $\tilde{\xi}_{p}^{ \pm}$
- Use same

$$
\sim f e^{-i \omega r_{*}}
$$ homog. sols: $\tilde{\xi}_{h}^{ \pm}$

$$
\xi_{p}^{ \pm}(t, r) \equiv \sum_{n} \tilde{\xi}_{p}^{ \pm}(r) e^{-i \omega t}, \quad \xi_{h}^{ \pm}(t, r) \equiv \sum_{n} \tilde{\xi}_{h}^{ \pm}(r) e^{-i \omega t}
$$

2nd-order EPS summary

- Std. source
- Std. particular solutions: $\tilde{\xi}_{p}^{\infty / H}$
- Causality gives
homog. sols: $\tilde{\xi}_{h}^{ \pm}$
- EHS source
- Extended particular solutions: $\tilde{\xi}_{p}^{ \pm}$
- Use same

$$
\sim f e^{-i \omega r_{*}}
$$

 homog. sols: $\tilde{\xi}_{h}^{ \pm}$

$$
\begin{gathered}
\xi_{p}^{ \pm}(t, r) \equiv \sum_{n} \tilde{\xi}_{p}^{ \pm}(r) e^{-i \omega t}, \quad \xi_{h}^{ \pm}(t, r) \equiv \sum_{n} \tilde{\xi}_{h}^{ \pm}(r) e^{-i \omega t} \\
\xi^{ \pm}(t, r)=\xi_{p}^{ \pm}(t, r)+\xi_{h}^{ \pm}(t, r)
\end{gathered}
$$

How to check the solution

- Given the metric perturbation transforms as

$$
p_{\mu \nu}^{\mathrm{L}}=p_{\mu \nu}^{\mathrm{RW}}-\Xi_{\mu \mid \nu}-\Xi_{\nu \mid \mu}
$$

- The MP amplitudes are pushed via

- The Lorenz gauge amplitudes should be C^{0}
- Lorenz gauge field equations provide jumps in first derivs
- They should be asymptotically ~ wave

How to check the solution

- Given the metric perturbation transforms as

$$
p_{\mu \nu}^{\mathrm{L}}=p_{\mu \nu}^{\mathrm{RW}}-\Xi_{\mu \mid \nu}-\Xi_{\nu \mid \mu},
$$

- The MP amplitudes are pushed via

$$
\begin{aligned}
& h_{r}^{\ell m, \mathrm{~L}}=h_{r}^{\ell m, \mathrm{RW}}-\frac{\partial}{\partial r} \xi_{\ell m}+\frac{2}{r} \xi_{\ell m} \\
& h_{t}^{\ell m, \mathrm{~L}}=h_{t}^{\ell m, \mathrm{RW}}-\frac{\partial}{\partial t} \xi_{\ell m} \\
& h_{2}^{\ell m, \mathrm{~L}}=h_{2}^{\ell m, \mathrm{RW}}-2 \xi_{\ell m}
\end{aligned}
$$

- The Lorenz gauge amplitudes should be C^{0}
- Lorenz gauge field equations provide jumps in first derivs
- They should be asymptotically ~ wave

How to check the solution

- Given the metric perturbation transforms as

$$
p_{\mu \nu}^{\mathrm{L}}=p_{\mu \nu}^{\mathrm{RW}}-\Xi_{\mu \mid \nu}-\Xi_{\nu \mid \mu},
$$

- The MP amplitudes are pushed via

$$
\begin{aligned}
& h_{r}^{\ell m, \mathrm{~L}}=h_{r}^{\ell m, \mathrm{RW}}-\frac{\partial}{\partial r} \xi_{\ell m}+\frac{2}{r} \xi_{\ell m} \\
& h_{t}^{\ell m, \mathrm{~L}}=h_{t}^{\ell m, \mathrm{RW}}-\frac{\partial}{\partial t} \xi_{\ell m} \\
& h_{2}^{\ell m, \mathrm{~L}}=h_{2}^{\ell m, \mathrm{RW}}-2 \xi_{\ell m}
\end{aligned}
$$

- The Lorenz gauge amplitudes should be C^{0}
- Lorenz gauge field equations provide jumps in first derivs
- They should be asymptotically ~ wave

How to check the solution

- Given the metric perturbation transforms as

$$
p_{\mu \nu}^{\mathrm{L}}=p_{\mu \nu}^{\mathrm{RW}}-\Xi_{\mu \mid \nu}-\Xi_{\nu \mid \mu},
$$

- The MP amplitudes are pushed via

$$
\begin{aligned}
& h_{r}^{\ell m, \mathrm{~L}}=h_{r}^{\ell m, \mathrm{RW}}-\frac{\partial}{\partial r} \xi_{\ell m}+\frac{2}{r} \xi_{\ell m} \\
& h_{t}^{\ell m, \mathrm{~L}}=h_{t}^{\ell m, \mathrm{RW}}-\frac{\partial}{\partial t} \xi_{\ell m} \\
& h_{2}^{\ell m, \mathrm{~L}}=h_{2}^{\ell m, \mathrm{RW}}-2 \xi_{\ell m}
\end{aligned}
$$

- The Lorenz gauge amplitudes should be C^{0}
- Lorenz gauge field equations provide jumps in first derivs

How to check the solution

- Given the metric perturbation transforms as

$$
p_{\mu \nu}^{\mathrm{L}}=p_{\mu \nu}^{\mathrm{RW}}-\Xi_{\mu \mid \nu}-\Xi_{\nu \mid \mu}
$$

- The MP amplitudes are pushed via

$$
\begin{aligned}
& h_{r}^{\ell m, \mathrm{~L}}=h_{r}^{\ell m, \mathrm{RW}}-\frac{\partial}{\partial r} \xi_{\ell m}+\frac{2}{r} \xi_{\ell m} \\
& h_{t}^{\ell m, \mathrm{~L}}=h_{t}^{\ell m, \mathrm{RW}}-\frac{\partial}{\partial t} \xi_{\ell m} \\
& h_{2}^{\ell m, \mathrm{~L}}=h_{2}^{\ell m, \mathrm{RW}}-2 \xi_{\ell m}
\end{aligned}
$$

- The Lorenz gauge amplitudes should be C^{0}
- Lorenz gauge field equations provide jumps in first derivs
- They should be asymptotically \sim wave

$h_{t}^{\ell m}$ in Regge-Wheeler gauge

$p=8.75455$
$e=0.764124$
$t_{\circ}=143.45 \mathrm{M}$
$-50 \leq n \leq 50$
$h_{t}^{21}\left(t_{\circ}, r_{*}\right)$ asymptotically

- Now C^{-1} at the particle
- Asymptotically grows

$h_{t}^{\ell m}$ in Lorenz gauge

$p=8.75455$
$e=0.764124$
$t_{\circ}=143.45 \mathrm{M}$
$-50 \leq n \leq 50$
$h_{t}^{21}\left(t_{\circ}, r_{*}\right)$ asymptotically

- Now C^{0} at the particle
- Asymptotically \sim wave
$h_{r}^{\ell m}$ in Regge-Wheeler gauge

$p=8.75455$
$e=0.764124$
$t_{\circ}=143.45 \mathrm{M}$
$-50 \leq n \leq 50$
$h_{r}^{21}\left(t_{\circ}, r_{*}\right)$ asymptotically

- Now C^{-1} at the particle
- Asymptotically grows

$h_{r}^{\ell m}$ in Lorenz gauge

$p=8.75455$
$e=0.764124$
$t_{\circ}=143.45 \mathrm{M}$
$-50 \leq n \leq 50$
$h_{r}^{21}\left(t_{\circ}, r_{*}\right)$ asymptotically

- Now C^{0} at the particle
- Asymptotically \sim wave

$\xi_{\ell m}^{\text {odd }}$ - numerical results

$p=8.75455$
$e=0.764124$
$t_{0}=143.45 \mathrm{M}$
$-50 \leq n \leq 50$
$\xi_{21}\left(t_{\mathrm{o}}, r_{*}\right)$ asymptotically

- We see the expected local and asymptotic behavior following the partial sum.

Outline

> Choosing a gauge and solving the Einstein equations

> Transforming from Regge-Wheeler to Lorenz gauge

> Odd-parity gauge transformation

Even-parity gauge transformation

Conclusions

Even-parity gauge transformations: Direct approach

- We choose between the "Direct approach" and the "SNS approach" (Sago, Nakano, and Sasaki)
- As we saw earlier, in the direct approach the natural decomposition of Ξ_{μ} is

$$
\begin{aligned}
& \Xi_{t}=\xi_{t}^{l m}(t, r) Y^{\ell m} \\
& \Xi_{r}=\xi_{r}^{l m}(t, r) Y^{\ell m} \\
& \Xi_{A}=\xi_{(e)}^{l m}(t, r) Y_{A}^{\ell m}+\xi_{(o)}^{l m}(t, r) X_{A}^{\ell m}
\end{aligned}
$$

- This leads to the coupled even-parity equations

$$
\begin{aligned}
\square \xi_{t}^{\ell m}+M_{t}\left(\xi_{t}, \xi_{r}\right) & =F_{t}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular terms } \\
\square \xi_{r}^{\ell m}+M_{r}\left(\xi_{r}, \xi_{t}, \xi_{(e)}\right) & =F_{r}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular terms } \\
\square \xi_{(e)}^{\ell m}+M_{(e)}\left(\xi_{(e)}, \xi_{r}\right) & =F_{(e)}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular terms }
\end{aligned}
$$

Even-parity gauge transformations: Direct approach

- We choose between the "Direct approach" and the "SNS approach" (Sago, Nakano, and Sasaki)
- As we saw earlier, in the direct approach the natural decomposition of Ξ_{μ} is

$$
\begin{aligned}
\Xi_{t} & =\xi_{t}^{\ell m}(t, r) Y^{\ell m} \\
\Xi_{r} & =\xi_{r}^{\ell m}(t, r) Y^{\ell m} \\
\Xi_{A} & =\xi_{(e)}^{\ell m}(t, r) Y_{A}^{\ell m}+\xi_{(o)}^{\ell m}(t, r) X_{A}^{\ell m}
\end{aligned}
$$

- This leads to the coupled even-parity equations

Even-parity gauge transformations: Direct approach

- We choose between the "Direct approach" and the "SNS approach" (Sago, Nakano, and Sasaki)
- As we saw earlier, in the direct approach the natural decomposition of Ξ_{μ} is

$$
\begin{aligned}
\Xi_{t} & =\xi_{t}^{\ell m}(t, r) Y^{\ell m} \\
\Xi_{r} & =\xi_{r}^{\ell m}(t, r) Y^{\ell m} \\
\Xi_{A} & =\xi_{(e)}^{\ell m}(t, r) Y_{A}^{\ell m}+\xi_{(o)}^{\ell m}(t, r) X_{A}^{\ell m}
\end{aligned}
$$

- This leads to the coupled even-parity equations

$$
\begin{aligned}
\square \xi_{t}^{\ell m}+M_{t}\left(\xi_{t}, \xi_{r}\right) & =F_{t}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular terms } \\
\square \xi_{r}^{\ell m}+M_{r}\left(\xi_{r}, \xi_{t}, \xi_{(e)}\right) & =F_{r}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular terms } \\
\square \xi_{(e)}^{\ell m}+M_{(e)}\left(\xi_{(e)}, \xi_{r}\right) & =F_{(e)}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular terms }
\end{aligned}
$$

Even-parity gauge transformations: SNS approach

- Formalism devised by Sago, Nakano, and Sasaki (2002)
- The odd-parity part same as before
- The even-parity splits further into scalar part and divergence-free vector part

$$
\Xi_{\text {even }}^{\mu}=\Xi_{(s)}{ }^{\prime \mu}+\Xi_{(v)}^{\mu}
$$

- Leads to a set of decoupled equations

$$
\begin{aligned}
W^{4} \xi_{\text {scalar }} & =F_{\text {scalar }}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular terms } \\
\mathcal{W}^{2} \psi_{1}^{l m} & =F_{1}\left(\Psi_{\mathrm{ZM}}\right)+G_{1}\left(\xi_{\text {scalar }}\right)+\text { singular terms } \\
\mathcal{W}^{2} \psi_{-1}^{l m} & =F_{-1}\left(\Psi_{\mathrm{ZM}}\right)+G_{-1}\left(\xi_{\text {scalar }}\right)+\text { singular terms } \\
\mathcal{W}^{2} \xi_{v_{t}}^{l m} & =F_{v_{t}}\left(\Psi_{\mathrm{ZM}}\right)+G_{v_{t}}\left(\psi_{1}\right)+H_{v_{t}}\left(\psi_{-1}\right)+\text { singular terms } \\
\xi_{v_{r}}^{l m} & =F_{v_{r}}\left(\xi_{v_{t}}\right)+G_{v_{r}}\left(\psi_{1}\right)+H_{v_{r}}\left(\psi_{-1}\right)+\text { singular terms }
\end{aligned}
$$

Even-parity gauge transformations: SNS approach

- Formalism devised by Sago, Nakano, and Sasaki (2002)
- The odd-parity part same as before
- The even-parity splits further into scalar part and divergence-free vector part

$$
\Xi_{\text {even }}^{\mu}=\Xi_{(s)}{ }^{\mid \mu}+\Xi_{(v)}^{\mu}
$$

- Leads to a set of decoupled equations

$$
\begin{aligned}
W^{1} \xi_{\text {scalar }}^{l} & =F_{\text {scalar }}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular terms } \\
\mathcal{W}^{2} \psi_{1}^{l m} & =F_{1}\left(\Psi_{\mathrm{ZM}}\right)+G_{1}\left(\xi_{\text {scalar }}\right)+\text { singular terms } \\
\mathcal{W}^{2} \psi_{-1}^{l m} & =F_{-1}\left(\Psi_{\mathrm{ZM}}\right)+G_{-1}\left(\xi_{\text {scalar }}\right)+\text { singular terms } \\
\mathcal{W}^{2} \xi_{v_{t}}^{l m} & =F_{v_{t}}\left(\Psi_{\mathrm{ZM}}\right)+G_{v_{t}}\left(\psi_{1}\right)+H_{v_{t}}\left(\psi_{-1}\right)+\text { singular terms } \\
\xi_{v_{r}}^{l m} & =F_{v_{r}}\left(\xi_{v_{t}}\right)+G_{v_{r}}\left(\psi_{1}\right)+H_{v_{r}}\left(\psi_{-1}\right)+\text { singular terms }
\end{aligned}
$$

Even-parity gauge transformations: SNS approach

- Formalism devised by Sago, Nakano, and Sasaki (2002)
- The odd-parity part same as before
- The even-parity splits further into scalar part and divergence-free vector part

$$
\Xi_{\text {even }}^{\mu}=\Xi_{(s)}^{\mid \mu}+\Xi_{(v)}^{\mu}
$$

- Leads to a set of decoupled equations

Even-parity gauge transformations: SNS approach

- Formalism devised by Sago, Nakano, and Sasaki (2002)
- The odd-parity part same as before
- The even-parity splits further into scalar part and divergence-free vector part

$$
\Xi_{\text {even }}^{\mu}=\Xi_{(s)}^{\mid \mu}+\Xi_{(v)}^{\mu}
$$

- Leads to a set of decoupled equations

$$
\begin{aligned}
\mathcal{W}^{4} \xi_{\mathrm{scalar}}^{\ell m} & =F_{\mathrm{scalar}}\left(\Psi_{\mathrm{ZM}}\right)+\text { singular terms } \\
\mathcal{W}^{2} \psi_{1}^{\ell m} & =F_{1}\left(\Psi_{\mathrm{ZM}}\right)+G_{1}\left(\xi_{\text {scalar }}\right)+\text { singular terms } \\
\mathcal{W}^{2} \psi_{-1}^{\ell m} & =F_{-1}\left(\Psi_{\mathrm{ZM}}\right)+G_{-1}\left(\xi_{\text {scalar }}\right)+\text { singular terms } \\
\mathcal{W}^{2} \xi_{v_{t}}^{\ell m} & =F_{v_{t}}\left(\Psi_{\mathrm{ZM}}\right)+G_{v_{t}}\left(\psi_{1}\right)+H_{v_{t}}\left(\psi_{-1}\right)+\text { singular terms } \\
\xi_{v_{r}}^{\ell m} & =F_{v_{r}}\left(\xi_{v_{t}}\right)+G_{v_{r}}\left(\psi_{1}\right)+H_{v_{r}}\left(\psi_{-1}\right)+\text { singular terms }
\end{aligned}
$$

Even-parity gauge transformations: SNS approach

- These equations are wave equations with sources that include extended terms with jumps and singular terms
- Can be solved via the EHS and EPS methods
- Having solved these equations gives

and derivatives to high accuracy everywhere.
- Finally, we recover the gauge push variables

Even-parity gauge transformations: SNS approach

- These equations are wave equations with sources that include extended terms with jumps and singular terms
- Can be solved via the EHS and EPS methods
- Having solved these equations gives

and derivatives to high accuracy everywhere.
- Finally, we recover the gauge push variables

Even-parity gauge transformations: SNS approach

- These equations are wave equations with sources that include extended terms with jumps and singular terms
- Can be solved via the EHS and EPS methods
- Having solved these equations gives

$$
\xi_{\mathrm{scalar}}^{\ell m}, \quad \xi_{v_{t}}^{\ell m}, \quad \xi_{v_{r}}^{\ell m}
$$

and derivatives to high accuracy everywhere.

- Finally, we recover the gauge push variables

Even-parity gauge transformations: SNS approach

- These equations are wave equations with sources that include extended terms with jumps and singular terms
- Can be solved via the EHS and EPS methods
- Having solved these equations gives

$$
\xi_{\text {scalar }}^{\ell m}, \quad \xi_{v_{t}}^{\ell m}, \quad \xi_{v_{r}}^{\ell m}
$$

and derivatives to high accuracy everywhere.

- Finally, we recover the gauge push variables

$$
\begin{aligned}
& \xi_{t}^{\ell m}=F_{t}\left(\xi_{v_{t}}\right)+G_{t}\left(\xi_{v_{r}}\right)+H_{t}\left(\xi_{\text {scalar }}\right) \\
& \xi_{r}^{\ell m}=F_{r}\left(\xi_{v_{t}}\right)+G_{r}\left(\xi_{v_{r}}\right)+H_{r}\left(\xi_{\text {scalar }}\right) \\
& \xi_{(e)}^{\ell m}=F_{(e)}\left(\xi_{v_{t}}\right)+G_{(e)}\left(\xi_{v_{r}}\right)+H_{(e)}\left(\xi_{\text {scalar }}\right)
\end{aligned}
$$

Even-parity gauge transformations: Pushing the MP

$$
\begin{aligned}
& \Delta h_{t t}^{\ell m}=-2 \partial_{t} \xi_{t}^{\ell m}+f \frac{2 M}{r^{2}} \xi_{r}^{\ell m} \\
& \Delta h_{t r}^{\ell m}=-\partial_{r} \xi_{t}^{\ell m}-\partial_{t} \xi_{r}^{\ell m}+\frac{2 M}{f r^{2}} \xi_{t}^{\ell m} \\
& \Delta h_{r r}^{\ell m}=-2 \partial_{r} \xi_{r}^{\ell m}-\frac{2 M}{f r^{2}} \xi_{r}^{\ell m} \\
& \Delta K^{\ell m}=-\frac{2 f}{r} \xi_{r}^{\ell m}+\frac{2(\lambda+1)}{r^{2}} \xi_{(e)}^{\ell m} \\
& \Delta j_{t}^{\ell m}=-\partial_{t} \xi_{(e)}^{\ell m}-\xi_{t}^{\ell m} \\
& \Delta j_{r}^{\ell m}=-\partial_{r} \xi_{(e)}^{\ell m}-\xi_{r}^{\ell m}+\frac{2}{r} \xi_{(e)}^{\ell m} \\
& \Delta G^{\ell m}=-\frac{2}{r^{2}} \xi_{(e)}^{\ell m}
\end{aligned}
$$

Even-parity gauge transformations: Pushing the MP

$$
\begin{aligned}
& \Delta h_{t t}^{\ell m}=-2 \partial_{t} \xi_{t}^{\ell m}+f \frac{2 M}{r^{2}} \xi_{r}^{\ell m} \\
& \Delta h_{t r}^{\ell m}=-\partial_{r} \xi_{t}^{\ell m}-\partial_{t} \xi_{r}^{\ell m}+\frac{2 M}{f r^{2}} \xi_{t}^{\ell m} \\
& \Delta h_{r r}^{\ell m}=-2 \partial_{r} \xi_{r}^{\ell m}-\frac{2 M}{f r^{2}} \xi_{r}^{\ell m} \\
& \Delta K^{\ell m}=-\frac{2 f}{r} \xi_{r}^{\ell m}+\frac{2(\lambda+1)}{r^{2}} \xi_{(e)}^{\ell m} \\
& \Delta j_{t}^{\ell m}=-\partial_{t} \xi_{(e)}^{\ell m}-\xi_{t}^{\ell m} \\
& \Delta j_{r}^{\ell m}=-\partial_{r} \xi_{(e)}^{\ell m}-\xi_{r}^{\ell m}+\frac{2}{r} \xi_{(e)}^{\ell m} \\
& \Delta G^{\ell m}=-\frac{2}{r^{2}} \xi_{(e)}^{\ell m}
\end{aligned}
$$

Even-parity gauge transformations: Pushing the MP

$$
\begin{aligned}
\Delta h_{t t}^{\ell m} & =-2 \partial_{t} \xi_{t}^{\ell m}+f \frac{2 M}{r^{2}} \xi_{r}^{\ell m} \\
\Delta h_{t r}^{\ell m} & =-\partial_{r} \xi_{t}^{\ell m}-\partial_{t} \xi_{r}^{\ell m}+\frac{2 M}{f r^{2}} \xi_{t}^{\ell m} \\
\Delta h_{r r}^{\ell m} & =-2 \partial_{r} \xi_{r}^{\ell m}-\frac{2 M}{f r^{2}} \xi_{r}^{\ell m} \\
\Delta K^{\ell m} & =-\frac{2 f}{r} \xi_{r}^{\ell m}+\frac{2(\lambda+1)}{r^{2}} \xi_{(e)}^{\ell m} \\
\Delta j_{t}^{\ell m} & =-\partial_{t} \xi_{(e)}^{\ell m}-\xi_{t}^{\ell m} \\
\Delta j_{r}^{\ell m} & =-\partial_{r} \xi_{(e)}^{\ell m}-\xi_{r}^{\ell m}+\frac{2}{r} \xi_{(e)}^{\ell m} \\
\Delta G^{\ell m} & =-\frac{2}{r^{2}} \xi_{(e)}^{\ell m}
\end{aligned}
$$

Even-parity gauge transformations: Current status

- We have adopted the SNS approach
- The equations have extended source terms and singular source terms
- We have solutions for all extended source terms
- Presently computing expressions for singular sources
- Will give high accuracy solutions to the first-order Einstein equations for "all" radiative modes.

Even-parity gauge transformations: Current status

- We have adopted the SNS approach
- The equations have extended source terms and singular source terms
- We have solutions for all extended source terms
- Presently computing expressions for singular sources
- Will give high accuracy solutions to the first-order Einstein equations for "all" radiative modes.

Even-parity gauge transformations: Current status

- We have adopted the SNS approach
- The equations have extended source terms and singular source terms
- We have solutions for all extended source terms
- Presently computing expressions for singular sources - Will give high accuracy solutions to the first-order Einstein equations for "all" radiative modes.

Even-parity gauge transformations: Current status

- We have adopted the SNS approach
- The equations have extended source terms and singular source terms
- We have solutions for all extended source terms
- Presently computing expressions for singular sources
- Will give high accuracy solutions to the first-order Einstein equations for "all" radiative modes.

Even-parity gauge transformations: Current status

- We have adopted the SNS approach
- The equations have extended source terms and singular source terms
- We have solutions for all extended source terms
- Presently computing expressions for singular sources
- Will give high accuracy solutions to the first-order Einstein equations for "all" radiative modes.

Outline

> Choosing a gauge and solving the Einstein equations

> Transforming from Regge-Wheeler to Lorenz gauge

> Odd-parity gauge transformation

> Even-parity gauge transformation

Conclusions

Conclusions

- High accuracy MPs in RW gauge for eccentric orbits on Schwarzschild
- Performed the odd-parity gauge transformation taking the metric perturbation from Regge-Wheeler to Lorenz gauge
- Partial annihilators and extended narticular solutions give the same result
- Even-parity very close to being done
- With low-order modes, will allow for high-accuracy SF calcs
- We have developed two useful solution techniques for wave equations with periodic extended source terms with discontinuities
- Both the partial annihilator and extended particular solutions methods provide high accuracy solutions at all points.
- These are exact analogies to the FHS method for extended sources.

Conclusions

- High accuracy MPs in RW gauge for eccentric orbits on Schwarzschild
- Performed the odd-parity gauge transformation taking the metric perturbation from Regge-Wheeler to Lorenz gauge
- Partial annihilators and extended particular solutions give the same result
- Even-parity very close to being done
- With low-order modes, will allow for high-accuracy SF calcs
- We have developed two useful solution techniques for wave equations with periodic extended source terms with discontinuities
- Both the partial annihilator and extended particular solutions methods provide high accuracy solutions at all points. - These are exact analogies to the EHS method for extended sources.

Conclusions

- High accuracy MPs in RW gauge for eccentric orbits on Schwarzschild
- Performed the odd-parity gauge transformation taking the metric perturbation from Regge-Wheeler to Lorenz gauge
- Partial annihilators and extended particular solutions give the same result
- Even-parity very close to being done
- With low-order modes, will allow for high-accuracy SF calcs
- We have developed two useful solution techniques for wave equations with periodic extended source terms with discontinuities
- Both the partial annihilator and extended particular solutions methods provide high accuracy solutions at all points. - These are exact analogies to the EHS method for extended sources.

Conclusions

- High accuracy MPs in RW gauge for eccentric orbits on Schwarzschild
- Performed the odd-parity gauge transformation taking the metric perturbation from Regge-Wheeler to Lorenz gauge
- Partial annihilators and extended particular solutions give the same result
- Even-parity very close to being done
- With low-order modes, will allow for high-accuracy SF calcs
- We have developed two useful solution techniques for wave equations with periodic extended source terms with discontinuities
- Both the partial annihilator and extended particular solutions methods provide high accuracy solutions at all points. - These are exact analogies to the EHS method for extended sources.

Conclusions

- High accuracy MPs in RW gauge for eccentric orbits on Schwarzschild
- Performed the odd-parity gauge transformation taking the metric perturbation from Regge-Wheeler to Lorenz gauge
- Partial annihilators and extended particular solutions give the same result
- Even-parity very close to being done
- With low-order modes, will allow for high-accuracy SF calcs
- We have developed two useful solution techniques for wave equations with periodic extended source terms with discontinuities
- Both the partial annihilator and extended particular solutions methods provide high accuracy solutions at all points. - These are exact analogies to the EHS method for extended sources.

Conclusions

- High accuracy MPs in RW gauge for eccentric orbits on Schwarzschild
- Performed the odd-parity gauge transformation taking the metric perturbation from Regge-Wheeler to Lorenz gauge
- Partial annihilators and extended particular solutions give the same result
- Even-parity very close to being done
- With low-order modes, will allow for high-accuracy SF calcs
- We have developed two useful solution techniques for wave equations with periodic extended source terms with discontinuities
- Both the partial annihilator and extended particular solutions methods provide high accuracy solutions at all points.
\square

Conclusions

- High accuracy MPs in RW gauge for eccentric orbits on Schwarzschild
- Performed the odd-parity gauge transformation taking the metric perturbation from Regge-Wheeler to Lorenz gauge
- Partial annihilators and extended particular solutions give the same result
- Even-parity very close to being done
- With low-order modes, will allow for high-accuracy SF calcs
- We have developed two useful solution techniques for wave equations with periodic extended source terms with discontinuities
- Both the partial annihilator and extended particular solutions methods provide high accuracy solutions at all points.

Conclusions

- High accuracy MPs in RW gauge for eccentric orbits on Schwarzschild
- Performed the odd-parity gauge transformation taking the metric perturbation from Regge-Wheeler to Lorenz gauge
- Partial annihilators and extended particular solutions give the same result
- Even-parity very close to being done
- With low-order modes, will allow for high-accuracy SF calcs
- We have developed two useful solution techniques for wave equations with periodic extended source terms with discontinuities
- Both the partial annihilator and extended particular solutions methods provide high accuracy solutions at all points.
- These are exact analogies to the EHS method for extended sources.

