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Wave equations

Many fields in classical physics are modelled as satisfying wave equations
of various kinds:

−∂2t ψ + c2∇2ψ + (lower order terms) = (source)

1 Electromagnetic fields

2 Spacetime metric

3 Acoustic/deformation fields

4 Water waves

In self-force problems, we often introduce a pointlike source and find
gradients of the field at that source.

Abraham Harte (AEI) Wave propagation and caustics June 11, 2012 3 / 20



Green functions

For many reasons, it’s useful to build up general solutions from a single
impulsive solution:

(gab∇a∇b + C a∇a + D)Gret(p, p
′) = −4πI δ(p, p′)

After finding Gret, sum:

ψ(p) =

∫
t>t0

Gretj
′dV ′ +

1

4π

∫
t=0

[Gret∇a′ψ′ −∇a′Gretψ
′]dSa′
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Short-distance behavior of Green functions

If p and p′ are sufficiently close,

Gret(p, p
′) = Θ(p ≥ p′)[Uδ(σ) + VΘ(−σ)]

Uδ(σ) describes propagation along null rays.

As in geometric optics,

U increasing ⇒ ray focusing

U decreasing ⇒ ray defocusing

VΘ(−σ) represents a “ringdown” following behind the wavefront.

V = 0 only in very special cases.
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Caustics

This picture can break down at large distances.

Null geodesics starting at a point p′ generically refocus.

Then,

σ and U develop problems
(at least at isolated points)

Timelike curves can “catch up”
to light rays.
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Global singularity structure

What happens to Gret(·, p′)?

General theorems describe the propagation of singularities in solutions to
linear wave equations.

Very roughly, singularities are propagated on null geodesics.

Globally, Gret(p, p
′) is singular along all future-directed null geodesics

starting at p′.
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It seems unlikely that anything general can be said about Gret(p, p
′) as a

whole. Concentrate only on its singular components.

Do this by considering a small neighborhood of some future-directed null
geodesic starting at p′.
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Penrose limits

Given a null geodesic z(u) in an arbitrary geometry, the metric
“sufficiently near” that geodesic is always equivalent to a plane wave.

From null Fermi-like coordinates (u, v , x), boost by λ−1 along ża, scale all
spatial coordinates by λ−1, conformally rescale metric by λ−2, and send
λ→ 0.

Then,
ds2 → −2dudv + Hij(u)x ix jdu2 + dx2 + dy2

This represents a plane-symmetric wave travelling in the v direction with
phase u and the 3-component waveform

Hij(u) = −Rabcd(z(u))ża(u)ebi (u)żc(u)edj (u)
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Hereditary properties of Penrose limits

Various properties of the original spacetime are preserved by Penrose limits:

Ricci-flatness (if present)

Conformal-flatness (if present)

Conjugate point structure of the reference geodesic

The metric “near” a null geodesic is a plane wave and all
caustics/conjugate points are retained in the associated plane wave.

Can something interesting be learned about generic Green function
singularities using plane waves?
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Leading-order singular structure

Yes!

Consider test functions ϕ(u, v , x , y) ∈ C∞0 (R4). Define

ϕλ(u, v , x) := ϕ(u, λ−2v , λ−1x)

in null Fermi coordinates (u, v , x) associated with z(u).

Then,

〈Gpw, ϕ〉 := lim
λ→0

λ−2〈G , ϕλ〉

is a Green function for a field propagating on the Penrose limit plane wave
spacetime.
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This limit zooms up on the reference geodesic and extracts singular parts
of G like δ(σ) ∼ 1/σ ∼ λ2.

It ignores anything smooth or with a singularity like ln |σ| ∼ lnλ.

All that remains is to find plane wave Green functions Gpw. This is
relatively simple.
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Some quick facts about plane wave spacetimes

Almost everywhere, pairs of points are connected by exactly one
geodesic

σ and all related functions can be defined almost everywhere.

Some pairs of points are connected by multiple geodesics. These are
connected by an infinite number of geodesics. They are conjugate
with respect to all of them.

Points connected by an infinite number of geodesics are conjugate on
all of them.

Before reaching caustics, the scalar Green function �pwGpw = −4πδ
has no tail: V = 0.
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Plane wave Green functions

Following p along some future-directed curve starting at p′, solutions to
�pwGpw(p, p′) = −4πδ(p, p′) do the following at caustics/conjugate
points:

1 If a caustic is non-degenerate (multiplicity 1),[
Gpw = |∆|1/2δ(σ)

]
before

→
[
Gpw = |∆|1/2pv

(
1

πσ

)]
after[

Gpw = |∆|1/2pv
(

1

πσ

)]
before

→
[
Gpw = −|∆|1/2δ(σ)

]
after

.

2 Crossing a caustic with multiplicity 2 is equivalent to two crossings of
non-degenerate caustics.
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Green functions on generic spacetimes

The most singular parts of a generic Green function follow the same
pattern:

Follow a null geodesic starting at a fixed point p′. Near this, G (·, p′)
switches between ±|∆|1/2δ(σ) and ±|∆|1/2pv(1/πσ).

Here, σ and ∆ are the world function and van Vleck determinant
associated with the Penrose limit plane wave of {spacetime, reference
geodesic}.
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Causality

Green functions involving 1/σ might seem to be acausal. They aren’t:

σ(p, p′) > 0 implies that p and p′ are causally disconnected only if p
and p′ are close.

If p is connected to p′ via a future-directed null geodesic segment
that includes at least one point conjugate to p′, p is in the
chronological future I+(p′) of p′.

I+(p′) is open ⇒ (small neighborhood of p) ⊂ I+(p′)

Plane wave-like structure is only valid in a vanishingly small region
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An application: self-force

Consider a charged particle moving in a curved spacetime.

What is the effect of this particle’s own field on its motion?

How much does this depend on its past history?

Do past caustics contribute anything interesting?
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Self force in a plane wave

Consider a scalar charge in a plane wave spacetime where all conjugate
points have multiplicity 2 (e.g., spacetime associated with scalar field
plane wave).

Green functions exist that are everywhere proportional to ±δ(σ) with no
tail.

Despite this, the R-field includes contributions from the charge’s past:
Timelike curves intersect (or “almost intersect”) the null cone multiple
times.
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More generally, the field on a charge’s timelike worldline z(u) is affected
via discrete contributions from every caustic in its past.

For a point charge in 1D motion, mass varies according to

m(u) = m∗ + 2q2
N(u)∑
n=1

(−1)n
[τ ′n(u)]

1
2

∆sn

(
dv/ds|τn
〈dv/ds〉n

)

Similar expressions show up for force ( ∝ 1/∆s2n)

One finds delay differential equations. These can be solved
self-consistently if desired.
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Summary

Part of the singular structure of Green functions in generic spacetimes
is equivalent to a Green function in an appropriate plane wave
spacetime.

Plane wave Green functions can be computed explicitly.

Encountering conjugate points on a null geodesic converts δ(σ)-type
singularities into 1/σ ones (and vice versa).

Caustic effects can contribute significantly to an object’s self-field.
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