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Motivation: Lorenz-gauge time-domain calc. on Kerr

Q1. Why consider Kerr?

Galactic BHs are rotating, a/M ∼ 0.5− 0.99.

Rotation breaks symmetry and leads to physical effects, e.g. ergodic
geodesics, frame-dragging, light-cone caustics become ‘tubes’, etc.

Resonances: Generic orbits may pass through resonance when
ωr/ωθ ∼ n1/n2 [Hinderer & Flanagan].

Q2. Why work in Lorenz-gauge?

Hyperbolic (wave-like) formulation of equations.

S-field has ‘symmetric’ singular part h̄ab ∼ 1/r
⇒ regularization is well-understood.

Q3. Why work in time-domain?

Lorenz-gauge MP not separable on Kerr
⇒ no ordinary diff. eq. formulation in freq. domain.

Self-consistent evolutions are most naturally handled with
time-domain scheme.



Formulation: Linearized equations

Linearized Einstein Eqs for Ricci-flat background:

�h̄ab + 2Rc da bh̄cd + Zc;c − Za;b − Zb;a = −16πTab,

Za ≡ h̄ ;b
ab , where h̄ab is the trace-reversed metric perturbation:

h̄ab = hab − 1
2gabh, and h = haa.

Z4 system and gauge choice

Use Generalized Lorenz gauge with gauge-driver Ha(hbc, x):

Za = Ha(x, hbc) (= 0 for Lor. gauge)

Z4 system: 10 eqns with 4 constraints,

�h̄ab + 2Rc da bh̄cd +Hc
;c −Ha;b −Hb;a = −16πTab,
ca ≡ Za −Ha = 0
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Formulation: Linearized equations

Z4 with constraint damping

�h̄ab + 2Rc da bh̄cd +Hc
;c −Ha;b −Hb;a

+κ (nacb + nbca) = −16πTab,

where κ(x) is a scalar function and na is a vector, and
ca = Za −Ha.

Choose κ, na so that constraints are damped, under

�ca = − (κ(nacb + nbca))
;b .

Good choice: na = ingoing principal null direction, with κ < 0.
hab is a solution of lin. Einstein eqns iff ca = 0.



Formulation: Mass and angular momentum

Combine Killing vector Xa and stress-energy Tab to form

conserved current: ja ≡ TabXb, j ;a
a = 0.

Poincaré lemma: δj = 0 ⇒ j = δF (where δ = ∗d∗), i.e.

ja = F ;b
ab , where Fab = F[ab],

Abbott & Deser (1982): Conserved two-form

Fab ≡ −(8π)−1
(
Xch̄c[a;b] +Xc

;[ah̄b]c +X[aZb]
)
,



Formulation: Mass and angular momentum















Apply Stokes’ theorem to get ‘quasi-local’ definitions:

∫
Σ
jadΣa =

∫
Σ
F ab;b dΣa

=
1
2

[∫
∂Σ
F abdSab

]r2
r1

=

{
µXaua, r1 < r0 < r2,

0, otherwise.



Formulation: Mass and angular momentum

Quasi-local quantity: Q(X, ∂Σ) ≡ 1
2

∫
∂Σ
F abdSab.

Is Q a useful definition of the mass/ang.mom. in a
given homogeneous metric perturbation hab?

Property 1: Q is gauge-invariant

If hab = 2ξ(a;b) then Fab ∝ η ;c
abc , where

ηabc ∝ X[aξb;c] +X[a;bξc].

It follows that Q ∝
∫

(bφ,θ − bθ,φ)dθdφ = [bφ]π0 = 0,
where b = ∗η.



Formulation: Mass and angular momentum

Quasi-local quantity: Q(X, ∂Σ) ≡ 1
2

∫
∂Σ
F abdSab.

Is Q a useful definition of the mass/ang.mom. in a
given homogeneous metric perturbation hab?

Property 2: Q gives correct mass/ang. mom. for Kerr pert.

Xa
(t) = [1, 0, 0, 0] ⇔ Q(t) and Xa

(φ) = [0, 0, 0, 1] ⇔ Q(φ)

Mass (M) and ang. mom (J ≡ aM) perturbations:

hab = µE ∂

∂M
gKerr
ab

∣∣∣∣
J

⇒ Q(t) = µE , Q(φ) = 0.

hab = µL ∂

∂J
gKerr
ab

∣∣∣∣
M

⇒ Q(t) = 0, Q(φ) = µL.



Formulation: Puncture scheme

Problem: h̄ab is divergent ∼ 1/ε towards worldline

Solution: Introduce puncture h̄Pab: a local approximation to
Detweiler-Whiting singular field h̄Sab.

Covariant expansion of h̄Sab ⇒ power-series in coordinate differences,

δxa = xa − x̄a, where x = field pt, x̄ = worldline pt

Classification: nth order puncture iff

hPab − hSab ∼ O
(
|δx| δxn−2

)
2nd-order in Barack et al ’07, 4th+ order from Wardell.

Local → Global definition: let x̄ become a function of x, e.g. set t̄ = t,
x̄ = xp(t).

Global continuation is arbitrary, but should be smooth around circle,
except at worldline

Use a periodic definition ϕ, e.g. δϕ2 → 2(1− cos δϕ) = δϕ2 +O(δϕ4)



Formulation: Puncture scheme

Introduce a worldtube T surrounding the worldline:

Outside worldtube T , evolve retarded field h̄ab.

Inside worldtube T , evolve residual field h̄Rab, i.e.
D̂hab = 0, outside T ,
D̂hRab = −16πT eff

ab , inside T ,
hRab = hab − hPab, across ∂T .

where T eff
ab ≡ Tab − (−16π)−1D̂hPab, and D̂ is wave operator.

Compute self-force Fa and gauge-invariant H from residual R field:

µ−1Fa = lim
x→z(τ)

kabcdh̄Rbc;d, H = 1
2u

aub lim
x→z(τ)

hRab.



Formulation: m-mode decomposition

Exploit the axial symmetry: decompose MP in m-modes
⇒ 2+1D eqns:

h̄ab =
∑
m

h̄
(m)
ab eimϕ.

Real field ⇒ h̄
(m)∗
ab = h̄

(−m)
ab

Reconstruct self-force, field, etc. from mode sums, e.g.

h̄Rab = lim
x→z

(
h̄

(m=0)
ab + 2

∞∑
m=0

Re
[
h̄
R(m)
ab eimϕ0(t)

])

Convergence-with-m depends on order of puncture:

1 Second-order ⇒ F
(m)
r , h̄

R(m)
ab ∼ O(m−2)

2 Fourth-order ⇒ F
(m)
r , h̄

R(m)
ab ∼ O(m−4)

3 . . . etc . . .



Implementation: Circular orbits on Kerr

Particle on circular orbit with frequency ω =
√
M/(r3/2

0 + a
√
M)

Define h̄ab w.r.t. Boyer-Lindquist coordinate system (t, r, θ, φ)

Introduce tortoise coords: r∗ =
∫
r2+a2

∆ dr, ϕ = φ+
∫

a
∆dr

Second-order puncture h̄Pab ∼ 4µχab/ε [Barack et al.’07], with

χab =

{
uaub + Cabδr for ab = tt, tφ, φφ

Cab sin δφ for ab = tr, tφ.

m-mode decomposition:

h̄
P(m)
ab =

e−im(ωt+∆φ)

2π

∫ π

−π
h̄Pab(δr, δθ, δφ)e−imδφd(δφ)

Integrals have an elliptic integral representation.

Use scaled evolution variables u(m)
ab ,

h̄
(m)
ab =

1
r

ΞaΞbu
(m)
ab (t, r, θ) (no sum)

where Ξa = [1, 1/(r − rh), r, r sin θ].
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Implementation: Circular orbits on Kerr

I used Lorenz-gauge Z4 system with constraint damping.

Cauchy evolution in (t, r∗, ϕ), with worldtube and effective source.

Fourth-order-accurate finite-differencing . . . except at worldline where
residual field is not smooth.

Boundary conditions:

1 Regular MP at the poles
2 Regular MP on the future horizon
3 u

(m)
ab ∼ O(1) as r →∞

Trivial initial conditions, u(m)
ab = 0 ... wait long enough and

‘Junk’ dissipates with time (in radiative sector).

Gauge-violation is driven to zero.



Results: Modal profiles
Slice 1: t = 250M, θ = π/2 (and r0 = 7M , m = 2)



Results: Modal profiles
Slice 2: t = 250M, r = r0 (and r0 = 7M , m = 2)



Results: Modal profiles (r0 = 7M , m = 2)
Slice 3: θ = π/2, r = r0 (and r0 = 7M , m = 2)



Results: Gauge-constraint violation

Constraint violation diminishes with increasing grid resolution



Results: Ft and energy balance

Showing time-domain value of Ft for various grid resolutions dr∗ = M/n.

In principle, Ft = ut0Ė, where Ė is energy loss rate (from Teuk. ψ0, ψ4).



Results: Ft and energy balance

Extrapolate over grid resolution to obtain best estimate
Convergence rate only x2 lnx with 2nd-order puncture



Results: Ft validation at a = 0.5M (m = 2 mode)
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Results: m-mode convergence: dissipative

Modes of dissipative component of GSF, Ft, converge exponentially,
Fmt ∼ exp(−λ|m|).



Results: m-mode convergence: conservative

Modes of conservative component, Fr (and hRuu) converge with
power-law, Fmt ∼ m−2 (for 2nd-order puncture).



Problem: Linear-in-t modes in Lorenz gauge

Problem: Modes m = 0, 1 suffer from linear-in-t instabilities!

Linear-in-t modes are homogeneous, pure-Lorenz-gauge solutions.
Linear-in-t modes are regular on future horizon and asymp-flat.
Linear-in-t modes are excited by generic initial data.
In Schw., these modes are in l = 0, l = 1 sectors only.
N.B. No l-mode time-domain scheme has successfully evolved
Schw. l = 0, 1 modes in Lorenz gauge.

Solution: Use a generalized Lorenz gauge to achieve stable
evolutions,

h̄ ;b
ab = Ha(hbc, x).



Problem: Time Evolution of m = 0 mode
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Radial Profile : m = 0 mode
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Radial Profile : m = 0 mode
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Solution : Generalized Lorenz gauge

Found that an explicit gauge driver of the form:

Ha ∝ na × h(m=0)
tr /rk, where na is ingoing null vector

restores stability to m = 0 sector.
For circular orbits, hStr = 0, so this gauge is non-singular.
Non-unique stationary solution which depends on initial condition.
The static solution (hti = 0) is also in Lorenz gauge (Za = 0).
Take linear combination of solutions to find static soln htr = 0.

1 Schw.: combine two solns in monopole (l = 0) sector.
2 Kerr: combine three solns, as mass & ang. mom. pert. are no

longer decoupled.

Unnecessary if we are only interested in gauge-invariant (e.g. ∆U).



Solution : m = 1 mode?

I have not found a generalized Lorenz gauge that stabilizes the
m = 1 sector.
Instead, I apply a frequency-filter to eliminate stationary and
linear-in-t modes:

hab → −
1
ω2

∂2

∂t2
hab
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Correcting the mass and angular momentum

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10  0  10  20  30  40

En
er

gy
 / 

An
gu

la
r M

om
en

tu
m

r* / M

Quasi-local mass and angular momentum in m=0 Lorenz-gauge perturbation

a = 0.5M, r0 = 6M

Mass

Azimuthal ang mom

(worldtube)

Q(t) / utQ(!) / u!

Take integrals over two-spheres to find ‘quasi-local’ mass Q(t) and

angular momentum Q(φ) in numerical solution h
(m=0)
ab .



Correcting the mass and angular momentum

To correct the mass and ang.mom. I add homogeneous Lorenz-gauge
solutions which are regular on the future horizon,

h
(∂M)
ab =

∂

∂M
gab

∣∣∣∣
J

+ gauge, h
(∂J)
ab =

∂

∂J
gab

∣∣∣∣
M

+ gauge.

. . . but these solutions are not asymp-flat.

Recall that in Schw., the static Lorenz-gauge solution with correct mass
is not asymp-flat: htt → −2α. (where α = µ/

√
r0(r0 − 3M) [Sago et al.

’08]).

In Kerr, I find that Lorenz-gauge static solution with correct mass and
ang.mom. is not asymp-flat in two components:

htt ∼ O(1) and htφ ∼ O(r2).

In Schw., azimuthal ang. mom. is in l = 1,m = 0 odd-parity mode.

In Schw., ∂gab/∂J(a = 0) is already in Lorenz-gauge – this is not the
case in Kerr.



Gauge invariants in asymptotic flat gauge

To compare results with Post-Newtonian expansions, and radiation
gauge/Hertz potential approach of Friedman et al., I need the
perturbation in an asymptotically-flat gauge.

htt ∼ O(1) is fixed with gauge vector ξa = [t̃, 0, 0, 0]

htφ ∼ O(r2) is fixed with ξa = [0, 0, 0, t̃], where t̃ is ingoing time
coordinate.

Detweiler has identified quantities that are gauge-invariant in a class of
(asymp-flat) gauges sharing helical symmetry of circular orbits:

(∂t + ω∂φ) ξa = 0.

Redshift invariant: ut = ut0 + µ∆U +O(µ2), where

∆U = Hut0, where H = 1
2h

R
abu

aub.



Gauge invariant comparison : ∆U for circular orbits
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Prospects for the future

1 What can we learn from ∆U calculation?
Are radiation-gauge and Lorenz-gauge results consistent?
If not, why not? Bug or conceptual issue?
Does ∆U agree with Post-Newtonian expansion, as r →∞?
∆U → ISCO shift, using method of Le Tiec.

2 Eccentric equatorial orbits:
Need to find a stable non-singular gauge for m = 0, m = 1. What
can we learn here from Numerical Relativity?
Periastron advance.
Calibration of free parameters in EOB theory.

3 Generic orbits: Resonances? [Hinderer & Flanagan]

4 Self-consistent evolutions on Kerr.

5 Second-order-in-µ calculations with worldtube scheme?
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