Time Domain Schemes for Gravitational Self Force

Sam Dolan

University of Southampton, UK
@ Capra 15, Univ. of Maryland, June 2012

Talk Outline

(1) Motivation

- Why compute GSF on Kerr?
(2) Formulation
- Linearized eqns and gauge choice.
- Mass and angular momentum
- Regularization / Puncture scheme
- m-mode decomposition
(3) Results: Circular orbits on Kerr
- Radiative modes
- Problem: $m=0,1$: linear-in- t modes
- Solution: generalized Lorenz gauge
- Comparison of ΔU with Friedman et al.
(1) Prospects

Motivation: Lorenz-gauge time-domain calc. on Kerr

Q1. Why consider Kerr?

- Galactic BHs are rotating, $a / M \sim 0.5-0.99$.
- Rotation breaks symmetry and leads to physical effects, e.g. ergodic geodesics, frame-dragging, light-cone caustics become 'tubes', etc.
- Resonances: Generic orbits may pass through resonance when $\omega_{r} / \omega_{\theta} \sim n_{1} / n_{2}$ [Hinderer \& Flanagan].

Q2. Why work in Lorenz-gauge?

- Hyperbolic (wave-like) formulation of equations.
- S-field has 'symmetric' singular part $\bar{h}_{a b} \sim 1 / r$ \Rightarrow regularization is well-understood.

Q3. Why work in time-domain?

- Lorenz-gauge MP not separable on Kerr \Rightarrow no ordinary diff. eq. formulation in freq. domain.
- Self-consistent evolutions are most naturally handled with time-domain scheme.

Formulation: Linearized equations

Linearized Einstein Eqs for Ricci-flat background:

$$
\square \bar{h}_{a b}+2 R_{a}^{c}{ }_{a}^{d} \bar{h}_{c d}+Z_{; c}^{c}-Z_{a ; b}-Z_{b ; a}=-16 \pi T_{a b},
$$

$Z_{a} \equiv \bar{h}_{a b}{ }^{; b}$, where $\bar{h}_{a b}$ is the trace-reversed metric perturbation:

$$
\bar{h}_{a b}=h_{a b}-\frac{1}{2} g_{a b} h, \quad \text { and } \quad h=h_{a}^{a} .
$$

Formulation: Linearized equations

Linearized Einstein Eqs for Ricci-flat background:

$$
\square \bar{h}_{a b}+2 R_{a}^{c}{ }_{a}^{d} \bar{h}_{c d}+Z_{; c}^{c}-Z_{a ; b}-Z_{b ; a}=-16 \pi T_{a b},
$$

$Z_{a} \equiv \bar{h}_{a b}{ }^{; b}$, where $\bar{h}_{a b}$ is the trace-reversed metric perturbation:

$$
\bar{h}_{a b}=h_{a b}-\frac{1}{2} g_{a b} h, \quad \text { and } \quad h=h_{a}^{a} .
$$

Z4 system and gauge choice

Use Generalized Lorenz gauge with gauge-driver $H_{a}\left(h_{b c}, x\right)$:

$$
Z_{a}=H_{a}\left(x, h_{b c}\right) \quad(=0 \quad \text { for Lor. gauge })
$$

Z4 system: 10 eqns with 4 constraints,

$$
\begin{aligned}
\square \bar{h}_{a b}+2 R_{a}^{c}{ }_{a}^{d} \bar{h}_{c d}+H_{; c}^{c}-H_{a ; b}-H_{b ; a} & =-16 \pi T_{a b}, \\
c_{a} \equiv Z_{a}-H_{a} & =0
\end{aligned}
$$

Formulation: Linearized equations

Z4 with constraint damping

$$
\begin{aligned}
& \square \bar{h}_{a b}+2 R_{a}^{c}{ }_{a b}^{d} \bar{h}_{c d}+H_{; c}^{c}-H_{a ; b}-H_{b ; a} \\
&+\kappa\left(n_{a} c_{b}+n_{b} c_{a}\right)=-16 \pi T_{a b},
\end{aligned}
$$

where $\kappa(x)$ is a scalar function and n_{a} is a vector, and

$$
c_{a}=Z_{a}-H_{a} .
$$

- Choose κ, n_{a} so that constraints are damped, under

$$
\square c_{a}=-\left(\kappa\left(n_{a} c_{b}+n_{b} c_{a}\right)\right)^{; b}
$$

- Good choice: $n_{a}=$ ingoing principal null direction, with $\kappa<0$.
- $h_{a b}$ is a solution of lin. Einstein eqns iff $c_{a}=0$.

Formulation: Mass and angular momentum

- Combine Killing vector X^{a} and stress-energy $T_{a b}$ to form

$$
\text { conserved current: } \quad j_{a} \equiv T_{a b} X^{b}, \quad j_{a}^{; a}=0
$$

- Poincaré lemma: $\delta j=0 \Rightarrow j=\delta F$ (where $\delta=* d *$), i.e.

$$
j_{a}=F_{a b}^{; b}, \quad \text { where } \quad F_{a b}=F_{[a b]},
$$

Abbott \& Deser (1982): Conserved two-form

$$
F_{a b} \equiv-(8 \pi)^{-1}\left(X^{c} \bar{h}_{c[a ; b]}+X_{;[a}^{c} \bar{h}_{b] c}+X_{[a} Z_{b]}\right),
$$

Formulation: Mass and angular momentum

Apply Stokes' theorem to get 'quasi-local' definitions:

$$
\begin{aligned}
\int_{\Sigma} j^{a} d \Sigma_{a} & =\int_{\Sigma} F_{; b}^{a b} d \Sigma_{a} \\
& =\frac{1}{2}\left[\int_{\partial \Sigma} F^{a b} d S_{a b}\right]_{r_{1}}^{r_{2}} \\
& = \begin{cases}\mu X^{a} u_{a}, & r_{1}<r_{0}<r_{2} \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Formulation: Mass and angular momentum

$$
\text { Quasi-local quantity: } \quad Q(X, \partial \Sigma) \equiv \frac{1}{2} \int_{\partial \Sigma} F^{a b} d S_{a b} .
$$

Is Q a useful definition of the mass/ang.mom. in a given homogeneous metric perturbation $h_{a b}$?

Property 1: Q is gauge-invariant

- If $h_{a b}=2 \xi_{(a ; b)}$ then $F_{a b} \propto \eta_{a b c}{ }^{; c}$, where

$$
\eta_{a b c} \propto X_{[a} \xi_{b ; c]}+X_{[a ; b} \xi_{c]}
$$

- It follows that $Q \propto \int\left(b_{\phi, \theta}-b_{\theta, \phi}\right) d \theta d \phi=\left[b_{\phi}\right]_{0}^{\pi}=0$, where $b=* \eta$.

Formulation: Mass and angular momentum

$$
\text { Quasi-local quantity: } \quad Q(X, \partial \Sigma) \equiv \frac{1}{2} \int_{\partial \Sigma} F^{a b} d S_{a b} .
$$

Is Q a useful definition of the mass/ang.mom. in a given homogeneous metric perturbation $h_{a b}$?

Property 2: Q gives correct mass/ang. mom. for Kerr pert.

- $X_{(t)}^{a}=[1,0,0,0] \Leftrightarrow Q_{(t)}$ and $X_{(\phi)}^{a}=[0,0,0,1] \Leftrightarrow Q_{(\phi)}$
- Mass (M) and ang. mom $(J \equiv a M)$ perturbations:

$$
\begin{aligned}
& h_{a b}=\left.\mu \mathcal{E} \frac{\partial}{\partial M} g_{a b}^{\mathrm{Kerr}}\right|_{J} \quad \Rightarrow \quad Q_{(t)}=\mu \mathcal{E}, \quad Q_{(\phi)}=0 . \\
& h_{a b}=\left.\mu \mathcal{L} \frac{\partial}{\partial J} g_{a b}^{\mathrm{Kerr}}\right|_{M} \quad \Rightarrow \quad Q_{(t)}=0, \quad Q_{(\phi)}=\mu \mathcal{L}
\end{aligned}
$$

Formulation: Puncture scheme

- Problem: $\bar{h}_{a b}$ is divergent $\sim 1 / \epsilon$ towards worldline
- Solution: Introduce puncture $\bar{h}_{a b}^{P}$: a local approximation to Detweiler-Whiting singular field $\bar{h}_{a b}^{S}$.
- Covariant expansion of $\bar{h}_{a b}^{S} \Rightarrow$ power-series in coordinate differences,

$$
\delta x^{a}=x^{a}-\bar{x}^{a}, \quad \text { where } \quad x=\text { field pt }, \quad \bar{x}=\text { worldline pt }
$$

- Classification: nth order puncture iff

$$
h_{a b}^{P}-h_{a b}^{S} \sim \mathcal{O}\left(|\delta x| \delta x^{n-2}\right)
$$

- 2nd-order in Barack et al '07, 4th+ order from Wardell.
- Local \rightarrow Global definition: let \bar{x} become a function of x, e.g. set $\bar{t}=t$, $\overline{\mathbf{x}}=\mathbf{x}_{p}(t)$.
- Global continuation is arbitrary, but should be smooth around circle, except at worldline
- Use a periodic definition φ, e.g. $\delta \varphi^{2} \rightarrow 2(1-\cos \delta \varphi)=\delta \varphi^{2}+\mathcal{O}\left(\delta \varphi^{4}\right)$

Formulation: Puncture scheme

Introduce a worldtube \mathcal{T} surrounding the worldine:

- Outside worldtube \mathcal{T}, evolve retarded field $\bar{h}_{a b}$.
- Inside worldtube \mathcal{T}, evolve residual field $\bar{h}_{a b}^{\mathcal{R}}$, i.e.

$$
\begin{cases}\hat{\mathcal{D}} h_{a b}=0, & \text { outside } \mathcal{T}, \\ \hat{\mathcal{D}} h_{a b}^{\mathcal{R}}=-16 \pi T_{a b}^{\mathrm{e} f}, & \text { inside } \mathcal{T}, \\ h_{a b}^{\mathcal{R}}=h_{a b}-h_{a b}^{\mathcal{P}}, & \text { across } \partial \mathcal{T}\end{cases}
$$

where $T_{a b}^{\mathrm{eff}} \equiv T_{a b}-(-16 \pi)^{-1} \hat{\mathcal{D}} h_{a b}^{\mathcal{P}}$, and $\hat{\mathcal{D}}$ is wave operator.

- Compute self-force F_{a} and gauge-invariant H from residual \mathcal{R} field:

$$
\mu^{-1} F_{a}=\lim _{x \rightarrow z(\tau)} k^{a b c d} \bar{h}_{b c ; d}^{\mathcal{R}}, \quad H=\frac{1}{2} u^{a} u^{b} \lim _{x \rightarrow z(\tau)} h_{a b}^{\mathcal{R}} .
$$

Formulation: m-mode decomposition

- Exploit the axial symmetry: decompose MP in m-modes $\Rightarrow 2+1 \mathrm{D}$ eqns:

$$
\bar{h}_{a b}=\sum_{m} \bar{h}_{a b}^{(m)} e^{i m \varphi} .
$$

- Real field $\Rightarrow \bar{h}_{a b}^{(m) *}=\bar{h}_{a b}^{(-m)}$
- Reconstruct self-force, field, etc. from mode sums, e.g.

$$
\bar{h}_{a b}^{R}=\lim _{x \rightarrow z}\left(\bar{h}_{a b}^{(m=0)}+2 \sum_{m=0}^{\infty} \operatorname{Re}\left[\bar{h}_{a b}^{\mathcal{R}(m)} e^{i m \varphi_{0}(t)}\right]\right)
$$

- Convergence-with- m depends on order of puncture:
(1) Second-order $\Rightarrow F_{r}^{(m)}, \bar{h}_{a b}^{\mathcal{R}(m)} \sim \mathcal{O}\left(m^{-2}\right)$
(2) Fourth-order $\Rightarrow F_{r}^{(m)}, \bar{h}_{a b}^{\mathcal{R}(m)} \sim \mathcal{O}\left(m^{-4}\right)$
(3)...etc...

Implementation: Circular orbits on Kerr

- Particle on circular orbit with frequency $\omega=\sqrt{M} /\left(r_{0}^{3 / 2}+a \sqrt{M}\right)$
- Define $\bar{h}_{a b}$ w.r.t. Boyer-Lindquist coordinate system (t, r, θ, ϕ)
- Introduce tortoise coords: $r_{*}=\int \frac{r^{2}+a^{2}}{\Delta} d r, \varphi=\phi+\int \frac{a}{\Delta} d r$

Implementation: Circular orbits on Kerr

- Particle on circular orbit with frequency $\omega=\sqrt{M} /\left(r_{0}^{3 / 2}+a \sqrt{M}\right)$
- Define $\bar{h}_{a b}$ w.r.t. Boyer-Lindquist coordinate $\operatorname{system}(t, r, \theta, \phi)$
- Introduce tortoise coords: $r_{*}=\int \frac{r^{2}+a^{2}}{\Delta} d r, \varphi=\phi+\int \frac{a}{\Delta} d r$
- Second-order puncture $\bar{h}_{a b}^{\mathcal{P}} \sim 4 \mu \chi_{a b} / \epsilon$ [Barack et al.'07], with

$$
\chi_{a b}= \begin{cases}u_{a} u_{b}+C_{a b} \delta r & \text { for } a b=t t, t \phi, \phi \phi \\ C_{a b} \sin \delta \phi & \text { for } a b=t r, t \phi\end{cases}
$$

- m-mode decomposition:

$$
\bar{h}_{a b}^{\mathcal{P}(m)}=\frac{e^{-i m(\omega t+\Delta \phi)}}{2 \pi} \int_{-\pi}^{\pi} \bar{h}_{a b}^{\mathcal{P}}(\delta r, \delta \theta, \delta \phi) e^{-i m \delta \phi} d(\delta \phi)
$$

Integrals have an elliptic integral representation.

Implementation: Circular orbits on Kerr

- Particle on circular orbit with frequency $\omega=\sqrt{M} /\left(r_{0}^{3 / 2}+a \sqrt{M}\right)$
- Define $\bar{h}_{a b}$ w.r.t. Boyer-Lindquist coordinate $\operatorname{system}(t, r, \theta, \phi)$
- Introduce tortoise coords: $r_{*}=\int \frac{r^{2}+a^{2}}{\Delta} d r, \varphi=\phi+\int \frac{a}{\Delta} d r$
- Second-order puncture $\bar{h}_{a b}^{\mathcal{P}} \sim 4 \mu \chi_{a b} / \epsilon$ [Barack et al.'07], with

$$
\chi_{a b}= \begin{cases}u_{a} u_{b}+C_{a b} \delta r & \text { for } a b=t t, t \phi, \phi \phi \\ C_{a b} \sin \delta \phi & \text { for } a b=t r, t \phi\end{cases}
$$

- m-mode decomposition:

$$
\bar{h}_{a b}^{\mathcal{P}(m)}=\frac{e^{-i m(\omega t+\Delta \phi)}}{2 \pi} \int_{-\pi}^{\pi} \bar{h}_{a b}^{\mathcal{P}}(\delta r, \delta \theta, \delta \phi) e^{-i m \delta \phi} d(\delta \phi)
$$

Integrals have an elliptic integral representation.

- Use scaled evolution variables $u_{a b}^{(m)}$,

$$
\bar{h}_{a b}^{(m)}=\frac{1}{r} \Xi_{a} \Xi_{b} u_{a b}^{(m)}(t, r, \theta) \quad \text { (no sum) }
$$

where $\Xi_{a}=\left[1,1 /\left(r-r_{h}\right), r, r \sin \theta\right]$.

Implementation: Circular orbits on Kerr

- I used Lorenz-gauge $Z 4$ system with constraint damping.
- Cauchy evolution in $\left(t, r_{*}, \varphi\right)$, with worldtube and effective source.
- Fourth-order-accurate finite-differencing ...except at worldline where residual field is not smooth.
- Boundary conditions:
(1) Regular MP at the poles
(2) Regular MP on the future horizon
(3) $u_{a b}^{(m)} \sim \mathcal{O}(1)$ as $r \rightarrow \infty$
- Trivial initial conditions, $u_{a b}^{(m)}=0 \ldots$ wait long enough and
- 'Junk' dissipates with time (in radiative sector).
- Gauge-violation is driven to zero.

Results: Modal profiles

Slice 1: $t=250 M, \theta=\pi / 2\left(\right.$ and $\left.r_{0}=7 M, m=2\right)$

Metric perturbation in equatorial plane as a function of radius

Results: Modal profiles

Slice 2: $t=250 M, r=r_{0}\left(\right.$ and $\left.r_{0}=7 M, m=2\right)$

Angular profile of metric perturbations

Results: Modal profiles $\left(r_{0}=7 M, m=2\right)$

Slice 3: $\theta=\pi / 2, r=r_{0}\left(\right.$ and $\left.r_{0}=7 M, m=2\right)$

Regularized metric perturbation on worldline as a function of time

Results: Gauge-constraint violation

- Constraint violation diminishes with increasing grid resolution

Results: F_{t} and energy balance

- Showing time-domain value of F_{t} for various grid resolutions $d r_{*}=M / n$.
- In principle, $F_{t}=u_{0}^{t} \dot{E}$, where \dot{E} is energy loss rate (from Teuk. ψ_{0}, ψ_{4}).

Results: F_{t} and energy balance

- Extrapolate over grid resolution to obtain best estimate
- Convergence rate only $x^{2} \ln x$ with 2 nd-order puncture

Results: F_{t} validation at $a=0.5 M$ ($m=2$ mode)

- For each m-mode, validate $\dot{E}=F_{t} / u_{0}^{t}$ against results of Finn \& Thorne.
- 0.3% disagreement here because Finn \& Thorne give \dot{E}_{∞}, whereas $\dot{E}=\dot{E}_{\infty}+\dot{E}_{h o r}$.

Results: m-mode convergence: dissipative

- Modes of dissipative component of GSF, F_{t}, converge exponentially, $F_{t}^{m} \sim \exp (-\lambda|m|)$.

Results: m-mode convergence: conservative

- Modes of conservative component, F_{r} (and $h_{u u}^{R}$) converge with power-law, $F_{t}^{m} \sim m^{-2}$ (for 2nd-order puncture).

Problem: Linear-in- t modes in Lorenz gauge

- Problem: Modes $m=0,1$ suffer from linear-in- t instabilities!
- Linear-in- t modes are homogeneous, pure-Lorenz-gauge solutions.
- Linear-in- t modes are regular on future horizon and asymp-flat.
- Linear-in- t modes are excited by generic initial data.
- In Schw., these modes are in $l=0, l=1$ sectors only.
- N.B. No l-mode time-domain scheme has successfully evolved Schw. $l=0,1$ modes in Lorenz gauge.
- Solution: Use a generalized Lorenz gauge to achieve stable evolutions,

$$
\bar{h}_{a b}^{; b}=H_{a}\left(h_{b c}, x\right)
$$

Problem: Time Evolution of $m=0$ mode

Metric perturbations on the worldline : $\mathrm{m}=0$

Radial Profile : $m=0$ mode

Radial profile of metric perturbations at $t=50 \mathrm{M}$

Radial Profile : $m=0$ mode

Radial profile of metric perturbations at $t=100 \mathrm{M}$

Radial Profile : $m=0$ mode

Radial profile of metric perturbations at $t=150 \mathrm{M}$

Solution : Generalized Lorenz gauge

- Found that an explicit gauge driver of the form:

$$
H_{a} \propto n_{a} \times h_{t r}^{(m=0)} / r^{k}, \quad \text { where } \quad n_{a} \text { is ingoing null vector }
$$

restores stability to $m=0$ sector.

- For circular orbits, $h_{t r}^{S}=0$, so this gauge is non-singular.
- Non-unique stationary solution which depends on initial condition.
- The static solution $\left(h_{t i}=0\right)$ is also in Lorenz gauge $\left(Z_{a}=0\right)$.
- Take linear combination of solutions to find static soln $h_{t r}=0$.
(1) Schw.: combine two solns in monopole $(l=0)$ sector.
(2) Kerr: combine three solns, as mass \& ang. mom. pert. are no longer decoupled.
- Unnecessary if we are only interested in gauge-invariant (e.g. ΔU).

Solution : $m=1$ mode?

- I have not found a generalized Lorenz gauge that stabilizes the $m=1$ sector.
- Instead, I apply a frequency-filter to eliminate stationary and linear-in- t modes:

$$
h_{a b} \rightarrow-\frac{1}{\omega^{2}} \frac{\partial^{2}}{\partial t^{2}} h_{a b}
$$

- This trick will not work for general orbits

Correcting the mass and angular momentum

- Take integrals over two-spheres to find 'quasi-local' mass $Q_{(t)}$ and angular momentum $Q_{(\phi)}$ in numerical solution $h_{a b}^{(m=0)}$.

Correcting the mass and angular momentum

- To correct the mass and ang.mom. I add homogeneous Lorenz-gauge solutions which are regular on the future horizon,

$$
h_{a b}^{(\partial M)}=\left.\frac{\partial}{\partial M} g_{a b}\right|_{J}+\text { gauge, } \quad h_{a b}^{(\partial J)}=\left.\frac{\partial}{\partial J} g_{a b}\right|_{M}+\text { gauge }
$$

- ... but these solutions are not asymp-flat.
- Recall that in Schw., the static Lorenz-gauge solution with correct mass is not asymp-flat: $h_{t t} \rightarrow-2 \alpha$. (where $\alpha=\mu / \sqrt{r_{0}\left(r_{0}-3 M\right)}$ [Sago et al. '08]).
- In Kerr, I find that Lorenz-gauge static solution with correct mass and ang.mom. is not asymp-flat in two components:

$$
h_{t t} \sim O(1) \quad \text { and } \quad h_{t \phi} \sim O\left(r^{2}\right) .
$$

- In Schw., azimuthal ang. mom. is in $l=1, m=0$ odd-parity mode.
- In Schw., $\partial g_{a b} / \partial J(a=0)$ is already in Lorenz-gauge - this is not the case in Kerr.

Gauge invariants in asymptotic flat gauge

- To compare results with Post-Newtonian expansions, and radiation gauge/Hertz potential approach of Friedman et al., I need the perturbation in an asymptotically-flat gauge.
- $h_{t t} \sim \mathcal{O}(1)$ is fixed with gauge vector $\xi^{a}=[\tilde{t}, 0,0,0]$
- $h_{t \phi} \sim \mathcal{O}\left(r^{2}\right)$ is fixed with $\xi^{a}=[0,0,0, \tilde{t}]$, where \tilde{t} is ingoing time coordinate.
- Detweiler has identified quantities that are gauge-invariant in a class of (asymp-flat) gauges sharing helical symmetry of circular orbits:

$$
\left(\partial_{t}+\omega \partial_{\phi}\right) \xi^{a}=0
$$

- Redshift invariant: $u^{t}=u_{0}^{t}+\mu \Delta U+\mathcal{O}\left(\mu^{2}\right)$, where

$$
\Delta U=H u_{0}^{t}, \quad \text { where } \quad H=\frac{1}{2} h_{a b}^{R} u^{a} u^{b} .
$$

Gauge invariant comparison : ΔU for circular orbits

First comparison of results for Detweiler's invariant $\Delta \mathrm{U}$ on Kerr

Gauge invariant comparison : ΔU for circular orbits

First comparison of results for Detweiler's invariant $\Delta \mathrm{U}$ on Kerr

a / M	0.0	0.25	0.5	0.7	0.75
Rad. gauge [S/F]	-0.29603	-0.25663	-0.22655	-0.20782	-0.20376
Lor. gauge [D/B]	$-0.296(2)$	$-0.262(2)$	$-0.235(2)$	$-0.218(2)$	$-0.214(2)$

Prospects for the future

(1) What can we learn from ΔU calculation?

- Are radiation-gauge and Lorenz-gauge results consistent?
- If not, why not? Bug or conceptual issue?
- Does ΔU agree with Post-Newtonian expansion, as $r \rightarrow \infty$?
- $\Delta U \rightarrow$ ISCO shift, using method of Le Tiec.
(2) Eccentric equatorial orbits:
- Need to find a stable non-singular gauge for $m=0, m=1$. What can we learn here from Numerical Relativity?
- Periastron advance.
- Calibration of free parameters in EOB theory.
(3) Generic orbits: Resonances? [Hinderer \& Flanagan]
(9) Self-consistent evolutions on Kerr.
(6) Second-order-in- μ calculations with worldtube scheme?

