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Overcharging Setup Cosmic Censorship

Cosmic Censorship

I The Weak Cosmic Censorship Conjecture posits that spacetime
singularities are hidden behind event horizons, making them invisible
to all observers in the external universe.

I Counterexamples:

1. Critical collapse of a massless scalar field with infinitely fine-tuned
initial conditions [Choptuik 1993].

2. Gregory-Laflamme instability of black strings [Gregory and Laflamme

1993, Lehner and Pretorius 2010].

3. Super-saturation of a black hole’s parameters by
overcharging/overspinning [Hubeny 1998, Jacobson and Sotiriou 2009].
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Overcharging within the test-particle approximation Motion in RN Spacetime

Infalling test-charges in Reissner-Nördstrom

I The spacetime of a spherically symmetric charged black hole is
described by the Reissner-Nördstrom (RN) line element

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2, f(r) = 1− 2M
r

+
Q2

r2
.

I We consider a particle of mass m and charge q � m following a
radial path towards a RN black hole having mass M and charge
Q = M(1− 2ε2) for small positive ε.

I The RN spacetime admits a timelike Killing vector tα = ∂xα

∂t that
gives rise to a conserved energy E0 = −tα(muα + qAα).
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Overcharging within the test-particle approximation Motion in RN Spacetime

Infalling Test-charges in Reissner-Nordström
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I Overcharging occurs when Q+ q > M + E0.

I A test charge with an open set of allowed parameters {q,m,E0}
moving according to m2ṙ2 = (E0 − qQ/r)2 −m2f(r) can cross the
event horizon and overcharge a near-extreme black hole.
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Overcharging within the test-particle approximation Hubeny’s Scenario for Overcharging

Overcharging Conditions

I The overcharging conditions are

1. ṙ2 > 0 , ∀r ≥ r+
2. Q+ q > M + E0

I By setting M ≡ 1, Q ≡ 1− 2ε2, Hubeny showed that the parameter
space for overcharging is the three-parameter family characterized by

q = aε a > 1 ,

E0 = aε− 2bε2 1 < b < a ,

m = cε c <
√
a2 − b2 .
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Overcharging within the test-particle approximation Including Self-Force Effects

Including Self-Force Effects
I Hubeny’s overcharging condition fails to account for energy lost by

the particle due to radiation, which is also O(ε2).
I The full O(ε2) overcharging condition reads

q +Q > M + E0 − Erad,

where Erad is the energy radiated to null future infinity.
I In addition, the radial acceleration of a Hubeny orbit at the event

horizon is O(ε2). Therefore self-force corrections, which are also of
order ε2, must be included in the infall condition.

I The self-force is incorporated by computing the work it does on the
particle as it moves inward

E(r) = E0 − q
∫ ∞
r

F self
tr dr

I The infall condition in the presence of the self-force is

(E(r)− qQ/r)2 > m2f(r) , ∀r ≥ r+
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Initial Data The Initial Data Struggle

The Initial Data Struggle

I We evolve the multipoles of the retarded field using a 1 + 1
time-domain scheme with trivial initial data.

I The use of unphysical/inconsistent initial data creates a burst of
“junk radiation”.

I Typical overcharging orbits are very high speed. In these cases, where
the particle and the ingoing junk radiation are traveling in close
proximity, the self-force at the particle is severely contaminated.

I We’ve tried several things to minimize the effect of the junk: static
initial data, adiabatic transition of the source, transition of the
trajectory, and direct excision of the ingoing null ray. Direct excision
proved to be the most effective.
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Initial Data Grid Excision

Grid Excision

I Without excision, clean self-force data is unavailable until after the ingoing junk
reflects from the peak of the potential, interacts with the particle, and finally
clears away.

I To deal with the burst and reflection of ingoing junk, we excise grid points
covering the ingoing null ray from the domain.
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Initial Data Excision Results

Excision Results
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Results Self-force Results

Self-Force Results
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I Overall, the local self-force fαloc = 2
3q

2 Daα

dτ captures the general
features of the full self-force.
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Results Searching for Overcharging Candidates

Searching for Overcharging Candidates

I To seach for overcharging candidates we randomly generate
parameters in the {a, b, c} space and implement a two-step selection
procedure:

1. We use the local self-force to select only the orbits for which the
particle crosses the event horizon.

2. From these orbits we select only those whose parameters satisfy the
overcharging condition

q +Q > E0 − Erad +M

where Erad is approximated using the Larmor formula

dErad

dt
≈ 2

3
q2

m2
Fµ

BHFBH µ

P. Zimmerman (Guelph) Electromagnetic Self-force and Overcharging June 12, 2012 11 / 14



Results Monte Carlo Results
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Results High Speed Overcharging Orbit
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For this candidate the full self-force is not sufficient to turn the particle
around. The flux is required to determine if the particle actually
overcharges the BH.
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Results Conclusion/Future Work

Conclusions and Future Work

I A Monte Carlo scan of the parameter space, based on crude estimates
of the flux and the self-force, reveals candidate trajectories that may
overcharge the BH.

I These cases (and others) require fuller scrutiny with exact
calculations of the flux and self-force.

I Thanks to the excision trick, techniques to carry out the
computations are in hand.

I Flux calculations are underway and answers will be forthcoming in the
next weeks.

I An argument, based on extended bodies and the third law of BH
mechanics is being devised which suggests that the self-force must
enforce cosmic censorship.
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Appendix Appendix I: Equations of motion

Appendix I: Particle Motion

I The equation of motion for a particle of mass m and charge q moving
under the influence of an external electromagnetic field F ext

αβ is given
by

maα = qF ext
αβ u

β.

I Radial, accelerated motion in Reissner-Nordström spacetime is
described by the equation

d2r∗

dt2
= − m2f

(E0r − qQ)3
(
rME0 + qQ(M − r)−Q2E0

)
,

where
E0 =

√
ṙ2 + f + qQ/r

in Schwarzschild coordinates xα = {t, r, θ, φ}.
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Appendix Appendix II

Appendix II: Retarded Field

I The retarded field Fαβ = ∂αAβ − ∂βAα obeys the sourced Maxwell
Equation

gµβ∇βFαµ = 4πjα,

where Aα is the electromagnetic potential and

jα = q

∫
uα δ4(x, z(τ))dτ.

I Spacetime tensors are written as multipole expansions in spherical
harmonics which decouple the radial and temporal tensor components
from angular ones.

I Radial motion is imposed which sets both the m-modes and the
angular current components to zero.

P. Zimmerman (Guelph) Electromagnetic Self-force and Overcharging June 12, 2012 16 / 14



Appendix Appendix III

Appendix III: Retarded Field

I For radial motion, the relevant field multipole is

F `tr = − 1
r2
ψ`(t, r)Y `(θA),

and the non-zero source components are given by

j`t = −q
√

2`+ 1
4π

f0

r20
δ(r − r0(t)),

j`r = q

√
2`+ 1

4π
dr0/dt

f0r20
δ(r − r0(t)).

I The field ψ` obeys the wave equation

4πf
[
∂t(r2j`r)− ∂r(r2j`t )

]
= −∂2

t ψ
` + f∂r(f∂rψ`)−

`(`+ 1)
r2

fψ`.
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Appendix Appendix IV

Appendix IV: Retarded Field - Numerical Method
I The wave equation for ψ` is written in standard form[

∂2
r∗ − ∂2

t − V `(r)
]
ψ`(t, r) = S`(r0(t), r).

I The source cell is divided into sub-areas Ai=1...4 based on the
locations where the particle enters and leaves the cell: (t1, r∗1) and
(t2, r∗2).
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Appendix Appendix V

Appendix V: Retarded Field - Numerical Method

I The field is evolved according to the second-order algorithm of Lousto
and Price

ψvac(t+ h, r∗) = −ψ(t− h, r∗) + [ψ(t, r∗ + h)

+ ψ(t, r∗ − h)]
[
1− 1

2
h2V (r∗)

]
+O(h4),

ψsource(t+ h, r∗) = −ψ(t− h, r∗)
[
1 +

V (r∗)
4

(A2 −A3)
]

+ ψ(t, r∗ + h)
[
1− V (r∗)

4
(A3 +A4)

]
+ ψ(t, r∗ − h)

[
1− V (r∗)

4
(A1 +A3)

]
− 1

4

[
1− V (r∗)

4
A4

] ∫∫
cell

S dudv +O(h3).
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Appendix Appendix VI

Appendix VI: Singular Field

I The potential Aα contains a piece which is singular on the world line.

I The multipole coefficients of the singular field constitute the
regularization parameters A, B, C, and D.

I The regularization parameters are computed perturbatively using a
local expansion about the world line. Their values are

A = − 1
r20

sign(∆),

B = − E

2mr20
+

qQ

mr30
,

C = 0,

D = − 3
16
E(E −m)(E +m)

m3r20
+

3
4mr30

(
qQ(m2 + E2)

2m2
−ME

)
.
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