Isotropic Transformation Optics and Approximate Cloaking

> Allan Greenleaf joint with Yaroslav Kurylev Matti Lassas Gunther Uhlmann

CLK08 @ CSCAMM September 24, 2008 Challenges of cloaking and other transformation optics (TO) designs:

Challenges of cloaking and other transformation optics (TO) designs:

Material parameters are

• Anisotropic

Challenges of cloaking and other transformation optics (TO) designs:

Material parameters are

- Anisotropic
- Singular:

At least one eigenvalue $\longrightarrow 0$ or ∞ at some points

• Material parameters transform as tensors:

Conductivity σ , permittivity ϵ , permeability μ , effective mass \widehat{m} , ...

• Material parameters transform as tensors:

Conductivity σ , permittivity ϵ , permeability μ , effective mass \widehat{m} , ...

• $F: \Omega \longrightarrow \Omega$ a smooth transformation:

 $\sigma(x)$ pushes forward to a new conductivity, $\tilde{\sigma} = F_*\sigma$,

$$(F_*\sigma)^{jk}(y) = \frac{1}{\det[\frac{\partial F^j}{\partial x^k}]} \sum_{p,q=1}^n \frac{\partial F^j}{\partial x^p} \frac{\partial F^k}{\partial x^q} \sigma^{pq}$$

with the RHS evaluated at $x = F^{-1}(y)$

 $\bullet\ F$ is a diffeomorphism, then

$$\nabla (\tilde{\sigma} \cdot \nabla) \tilde{u} = 0 \iff \nabla (\sigma \cdot \nabla) u = 0,$$

where $u(x) = \tilde{u}(F(x))$.

 $\bullet\ F$ is a diffeomorphism, then

$$\nabla (\tilde{\sigma} \cdot \nabla) \tilde{u} = 0 \iff \nabla (\sigma \cdot \nabla) u = 0,$$

where $u(x) = \tilde{u}(F(x))$.

• For many TO designs, F is singular

• F is a diffeomorphism, then

$$\nabla (\tilde{\sigma} \cdot \nabla) \tilde{u} = 0 \iff \nabla (\sigma \cdot \nabla) u = 0,$$

where $u(x) = \tilde{u}(F(x))$.

- For many TO designs, F is singular
- Removable singularity theory $can \implies \exists$ one-to-one correspondence

{ Solutions of $\nabla \cdot (\tilde{\sigma} \nabla \tilde{u}) = 0$ } \leftrightarrow { Solutions of $\nabla \cdot (\sigma \nabla u) = 0$ }

• Invisible tunnels (optical cables, waveguides)

- Invisible tunnels (optical cables, waveguides)
- Change the topology of space *vis-a-vis* EM wave propagation

- Invisible tunnels (optical cables, waveguides)
- Change the topology of space *vis-a-vis* EM wave propagation
- Based on "blowing up a curve" rather than "blowing up a point"

- Invisible tunnels (optical cables, waveguides)
- Change the topology of space *vis-a-vis* EM wave propagation
- Based on "blowing up a curve" rather than "blowing up a point"
- Inside of wormhole can be varied to get different effects

- Invisible tunnels (optical cables, waveguides)
- Change the topology of space *vis-a-vis* EM wave propagation
- Based on "blowing up a curve" rather than "blowing up a point"
- Inside of wormhole can be varied to get different effects
- Produces global effect on waves encountering the WH

•
$$M = (M_1, g_1) \cup (M_2, g_2) \xrightarrow{F} N = (N_1, \tilde{g_1}) \cup (N_2, \tilde{g_2}) \subset \mathbb{R}^3$$

•
$$M = (M_1, g_1) \cup (M_2, g_2) \xrightarrow{F} N = (N_1, \tilde{g_1}) \cup (N_2, \tilde{g_2}) \subset \mathbb{R}^3$$

• $M_1 = \mathbb{R}^3 \setminus (B_1 \cup B_2) \supset \gamma_1$, $F_1 : M_1 \setminus \gamma_1 \longrightarrow N_1 \subset \mathbb{R}^3$ exterior of WH

•
$$M = (M_1, g_1) \cup (M_2, g_2) \xrightarrow{F} N = (N_1, \tilde{g_1}) \cup (N_2, \tilde{g_2}) \subset \mathbb{R}^3$$

- $M_1 = \mathbb{R}^3 \setminus (B_1 \cup B_2) \supset \gamma_1$, $F_1 : M_1 \setminus \gamma_1 \longrightarrow N_1 \subset \mathbb{R}^3$ exterior of WH
- $M_2 = \mathbb{S}^2 \times [0,1] \supset \gamma_2$, $F_2 : M_2 \setminus \gamma_2 \longrightarrow N_2 \subset \mathbb{R}^3$ tunnel

•
$$M = (M_1, g_1) \cup (M_2, g_2) \xrightarrow{F} N = (N_1, \tilde{g_1}) \cup (N_2, \tilde{g_2}) \subset \mathbb{R}^3$$

- $M_1 = \mathbb{R}^3 \setminus (B_1 \cup B_2) \supset \gamma_1$, $F_1 : M_1 \setminus \gamma_1 \longrightarrow N_1 \subset \mathbb{R}^3$ exterior of WH
- $M_2 = \mathbb{S}^2 \times [0,1] \supset \gamma_2$, $F_2 : M_2 \setminus \gamma_2 \longrightarrow N_2 \subset \mathbb{R}^3$ tunnel
- Missing: K = thickened wall of tunnel, where impose SHS condition

•
$$M = (M_1, g_1) \cup (M_2, g_2) \xrightarrow{F} N = (N_1, \tilde{g_1}) \cup (N_2, \tilde{g_2}) \subset \mathbb{R}^3$$

- $M_1 = \mathbb{R}^3 \setminus (B_1 \cup B_2) \supset \gamma_1$, $F_1 : M_1 \setminus \gamma_1 \longrightarrow N_1 \subset \mathbb{R}^3$ exterior of WH
- $M_2 = \mathbb{S}^2 \times [0,1] \supset \gamma_2$, $F_2 : M_2 \setminus \gamma_2 \longrightarrow N_2 \subset \mathbb{R}^3$ tunnel
- Missing: K = thickened wall of tunnel, where impose SHS condition
- $\tilde{g} \leftrightarrow \tilde{\epsilon} = \tilde{\mu} = |\tilde{g}|^{1/2} \tilde{g}^{-1}$: anisotropic, and singular at surfaces of tunnel

• Formulate in terms of Riemannian metric

- Formulate in terms of Riemannian metric
- Conductivity tensors σ (and ϵ, μ, \dots) \leftrightarrow Riemannian metrics g:

- Formulate in terms of Riemannian metric
- Conductivity tensors σ (and ϵ, μ, \dots) \leftrightarrow Riemannian metrics g:

$$\sigma^{jk} = |g|^{1/2} g^{jk} \leftrightarrow \quad g^{jk} = |\sigma|^{-1/(n-2)} \sigma^{jk}$$

- Formulate in terms of Riemannian metric
- Conductivity tensors σ (and ϵ, μ, \dots) \leftrightarrow Riemannian metrics g:

$$\sigma^{jk} = |g|^{1/2} g^{jk} \leftrightarrow \quad g^{jk} = |\sigma|^{-1/(n-2)} \sigma^{jk}$$

•
$$(\Delta_g + \omega^2)u(x) = h(x)$$
, with source h

• Cloaking manifold (virtual space)

$$M_1 = B_2 = \{ |x| \le 2 \}, \quad g_1 = g_{eucl}$$

 $(M_2, g_2) = (B_1, g_{any})$

• Cloaking manifold (virtual space)

$$M_1 = B_2 = \{ |x| \le 2 \}, \quad g_1 = g_{eucl}$$

 $(M_2, g_2) = (B_1, g_{any})$

• Singular transformation

 $F_1: M_1 \setminus \{0\} \longrightarrow N_1 = B_2 \setminus B_1 \subset \mathbb{R}^3, \quad F_1(x) = (1 + \frac{|x|}{2}) \frac{x}{|x|}$ $F_2: M_2 \longrightarrow N_2 = B_1, \quad F_2(x) = x \text{ (or any diffeom.)}$ • Cloaking device (physical space)

$$N = N_1 \cup N_2 = B_2$$
 with $\tilde{g} = (\tilde{g}_1, \tilde{g}_2) = ((F_1)_* g_1, (F_2)_* g_2)$

Cloaking surface $\Sigma = \{|x| = 1\}$

 \tilde{g} nonsingular on Σ^- , singular on Σ^+ : $\lambda_1, \lambda_2 \sim 1, \lambda_3 \sim (r-1)^2$

Thm. (3D Cloaking for Helmholtz) Let $\tilde{h} = (\tilde{h}_1, \tilde{h}_2)$ be supported away from Σ . Then there is a 1-1 correspondence between [finite energy] [distributional] solutions $\tilde{u} = (\tilde{u}_1, \tilde{u}_2)$ of

$$(\Delta_{\tilde{g}} + \omega^2)\tilde{u} = \tilde{h}$$
 on N

and solutions $u = (u_1, u_2) = \tilde{u} \circ F = (\tilde{u}_1 \circ F_1, \tilde{u}_2 \circ F_2)$ of

$$(\Delta_{g_1} + \omega^2)u_1 = h_1 := \tilde{h}_1 \circ F_1$$
 on M_1

 $(\Delta_{g_2} + \omega^2)u_2 = h_2 := \tilde{h}_2$ on M_2 , $\partial_{\nu}u_2 = 0$ on ∂M_2

• "Virtual surface" at Σ : acts as a perfectly reflector

- "Virtual surface" at Σ : acts as a perfectly reflector
- Dichotomy: cloaking vs. trapped states

(I) If ω^2 is not a Neumann eigenvalue of (M_2, g_2) , waves cannot penetrate Σ , and $\tilde{u}_2 \equiv 0$ on B_1 :

Cloaking works as advertised

or

(II) If ω^2 is an eigenvalue, then \exists waves $\equiv 0$ on $B_2 \setminus B_1$

and = a Neumann eigenfunction on B_1 :

Trapped states

Wave passing cloak (ω^2 not an eigenvalue)

Trapped state (ω^2 an eigenvalue)

3D Acoustic cloak

(Helmholtz)
$$|g|^{-1/2} \sum_{j,k} \partial_j (|g|^{1/2} g^{jk} \partial_k u) + \omega^2 u = 0$$
$$\iff$$

(Acoustic)
$$\sum_{j,k} \partial_j (|g|^{1/2} g^{jk} \partial_k u) + \omega^2 |g|^{1/2} u = 0$$

with mass density $\rho^{jk} = |g|^{1/2}g^{jk}$, bulk modulus $\lambda = |g|^{1/2}$.

3D Acoustic cloak

(Helmholtz)
$$|g|^{-1/2} \sum_{j,k} \partial_j (|g|^{1/2} g^{jk} \partial_k u) + \omega^2 u = 0$$
$$\iff$$

(Acoustic)
$$\sum_{j,k} \partial_j (|g|^{1/2} g^{jk} \partial_k u) + \omega^2 |g|^{1/2} u = 0$$

with mass density $\rho^{jk} = |g|^{1/2}g^{jk}$, bulk modulus $\lambda = |g|^{1/2}$.

- Same as H. Chen and C.T. Chan, Appl. Phys. Lett. 91 (2007), 183518, and S. Cummer, et al., Phys. Rev. Lett. 100 (2008), 024301.
- Σ^- acts as a sound-hard virtual surface, and dichotomy holds...

Quantum Mechanical Cloak for Matter Waves

At energy E, let $\omega = \sqrt{E}$:

(Schrödinger)
$$-\sum_{j,k} \partial_j (|g|^{1/2} g^{jk} \partial_k \psi) + E(1 - |g|^{1/2}) \psi = E\psi$$

with effective mass $\widehat{m}^{jk} = |g|^{1/2}g^{jk}$, $\widehat{V} = E(1 - |g|^{1/2})$

Quantum Mechanical Cloak for Matter Waves

At energy E, let $\omega = \sqrt{E}$:

(Schrödinger)
$$-\sum_{j,k} \partial_j (|g|^{1/2} g^{jk} \partial_k \psi) + E(1 - |g|^{1/2}) \psi = E \psi$$

with effective mass $\hat{m}^{jk} = |g|^{1/2} g^{jk}$, $\hat{V} = E(1 - |g|^{1/2})$

- Same as Zhang, et al., *Phys. Rev. Lett.* 100 (2008), 123002.
- Ditto, ditto, ...

Approximate Cloaking

- Avoid anisotropic, singular material parameters
- Replace with isotropic, nonsingular parameters

Approximate Cloaking

- Avoid anisotropic, singular material parameters
- Replace with isotropic, nonsingular parameters
- Price: cloaks only *approximately* (but to arbitrary accuracy)
- Believe: should work for other singular TO designs

General acoustic-like equations

• Incorporate magnetic potential b into eqn. $\longrightarrow \nabla_b = \nabla + i b$

(*)
$$\nabla_b \cdot \sigma_1 \nabla_b u + q|g|^{1/2} u = h$$

• Truncated equations: For $1 < R \leq \frac{3}{2}$, replace σ_1 by

$$\sigma_R(x) = \begin{cases} (F_1)_*(\delta^{jk}), & x \in B_2 \setminus B_R \\ 2\delta^{jk}, & x \in B_R \end{cases}$$

- Quadratic forms a_1 and a_R
- Monotonicity: $a_R[u] \searrow$ as $R \searrow 1$ (NOT TRUE FOR n = 2)

• Lemma
$$\Gamma - lim_{R \longrightarrow 1} a_R = a_1$$
 on L_g^2

• Then truncate $|g|^{1/2}$, ..., get nonsingular, anisotropic acoustic eqns whose solutions approximate those of the original eqn.

• Homogenization: approximate these by isotropic equations, ditto

Approximate quantum cloaking

• Fix V_0 with $\operatorname{supp}(V_0) \subset B_1$, and magnetic potential b(x)

Then, if $E \notin Spec_D(-\nabla_b^2; B_2) \cup Spec_N(-\nabla_b^2 + V_0; B_1)$, there exist approximate cloaking potentials $\{V_n^E\}_{n=1}^{\infty}$ such that

$$\lim \Lambda_{V_0+V_n^E} f = \Lambda_0 f, \quad \forall f \in H^{1/2}(\partial B_2)$$

Approximate dichotomy:

• (I) If E is far from a $Spec_N(-\nabla_b^2 + V_0; B_1)$, then the V_n^E act as approximate quantum cloaks: matter waves at energy E will pass by roughly undisturbed;

or

• (II) If E is close to an eigenvalue, then V_n^E supports almost trapped states, largely concentrated in B_1 .

• Magnetically tunable: switch between (I) and (II) by varying b(x)

Red: wave passing cloak. Blue: almost trapped state

