Near-Cloaking by Change of Variables at Finite Frequency, I: An Approach using Lossy Layers

Robert V. Kohn Courant Institute, NYU

CSCAMM, September 2008

Collaborators: D. Onofrei, M. Vogelius, M. Weinstein

This talk: framework and theory Onofrei: examples and numerics

What is cloaking?

cloaked region can have any shape

- the cloaked region should be invisible
- even the cloak itself should be invisible
- our cloaks will be coatings with heterogeneous, anisotropic dielectric properties

In what sense invisible?

• this talk: Helmholtz at fixed frequency

What is cloaking?

cloaked region can have any shape

- the cloaked region should be invisible
- even the cloak itself should be invisible
- our cloaks will be coatings with heterogeneous, anisotropic dielectric properties

In what sense invisible?

this talk: Helmholtz at fixed frequency

Outline

(1) Cloaking by change of variables

- The basic idea
- Approximate cloaks and inclusion problems
- (2) Does it work?
 - At frequency 0: yes
 - At frequency \neq 0: problem due to resonance
 - Resolution: damping
- (3) How well does it work?
 - 2D case (is $1/|\log \rho|$ small?)
 - 3D case (much better)

Change-of-variable scheme introduced by:

- Greenleaf, Lassas, Uhlmann (2003, freq 0 = impedance tomography)
- Pendry, Schurig, Smith (2006, finite freq = electromag scattering)

Just one approach to cloaking; others include

- anomalous localized resonance (Milton, Nicorovici)
- optical conformal mapping (Leonhardt)

$$\sum \frac{\partial}{\partial x_i} \left(A_{ij}(x) \frac{\partial u}{\partial x_j} \right) + \omega^2 q(x) u = 0 \quad \text{in } \Omega$$

Neumann-to-Dirichlet map characterizes "boundary measurements" (invertible if ω^2 is not an eigenvalue)

$$\Lambda_{A,q}$$
 : $(A \nabla u) \cdot \nu|_{\partial \Omega} \rightarrow u|_{\partial \Omega}$

Same DN map \Leftrightarrow same scattering data.

Cloaking in this setting: $A_c(x)$ and $q_c(x)$, defined on $\Omega \setminus D$, cloak D if resulting bdry measurments "look uniform," indep of content of D.

Getting used to the definitions

Scattering seeks knowledge of interior properties, based on response to plane waves.

Exterior sees Ω only via Cauchy data ("bdry meas" or "DN map").

We say $A_c(x)$, $q_c(x)$ (defined in $\Omega \setminus D$) cloaks D if the Cauchy data at $\partial \Omega$ are (a) indep of content of D, and (b) same as for uniform case A = q = 1.

Name is apt, since extn of A_c , q_c by 1 to larger domain is also a cloak.

Basic observation: bdry meas determine material properties at most "up to change of variables."

If $F : \Omega \to \Omega$ is invertible and F(x) = x on $\partial\Omega$ then A, q and F_*A, F_*q produce the same boundary measurements, where

$$F_*A(y) = \frac{1}{\det(DF)(x)}DF(x)A(x)(DF(x))^T \quad F_*q(y) = \frac{1}{\det(DF)(x)}q(x)$$

with $y = F(x)$.

- weak form: $\int_{\Omega} \langle A \nabla_x u, \nabla_x \phi \rangle \omega^2 q u \phi \, dx = 0$ if $\phi = 0$ near $\partial \Omega$
- change vars: $\int_{\Omega} \langle F_*(A) \nabla_y u, \nabla_y \phi \rangle \omega^2 F_*(q) u \phi \, dy = 0$
- F = id at bdry \Rightarrow chg of vars doesn't affect bdry data

Basic observation: bdry meas determine material properties at most "up to change of variables."

If $F : \Omega \to \Omega$ is invertible and F(x) = x on $\partial\Omega$ then A, q and F_*A, F_*q produce the same boundary measurements, where

$$F_*A(y) = \frac{1}{\det(DF)(x)}DF(x)A(x)(DF(x))^T \quad F_*q(y) = \frac{1}{\det(DF)(x)}q(x)$$

with $y = F(x)$.

- weak form: $\int_{\Omega} \langle A \nabla_x u, \nabla_x \phi \rangle \omega^2 q u \phi \, dx = 0$ if $\phi = 0$ near $\partial \Omega$
- change vars: $\int_{\Omega} \langle F_*(A) \nabla_y u, \nabla_y \phi \rangle \omega^2 F_*(q) u \phi \, dy = 0$
- F = id at bdry \Rightarrow chg of vars doesn't affect bdry data

Basic observation: bdry meas determine material properties at most "up to change of variables."

If $F : \Omega \to \Omega$ is invertible and F(x) = x on $\partial\Omega$ then A, q and F_*A, F_*q produce the same boundary measurements, where

$$F_*A(y) = \frac{1}{\det(DF)(x)}DF(x)A(x)(DF(x))^T \quad F_*q(y) = \frac{1}{\det(DF)(x)}q(x)$$

with $y = F(x)$.

- weak form: $\int_{\Omega} \langle A \nabla_x u, \nabla_x \phi \rangle \omega^2 q u \phi \, dx = 0$ if $\phi = 0$ near $\partial \Omega$
- change vars: $\int_{\Omega} \langle F_*(A) \nabla_y u, \nabla_y \phi \rangle \omega^2 F_*(q) u \phi \, dy = 0$
- F = id at bdry \Rightarrow chg of vars doesn't affect bdry data

Basic observation: bdry meas determine material properties at most "up to change of variables."

If $F : \Omega \to \Omega$ is invertible and F(x) = x on $\partial\Omega$ then A, q and F_*A, F_*q produce the same boundary measurements, where

$$F_*A(y) = \frac{1}{\det(DF)(x)}DF(x)A(x)(DF(x))^T \quad F_*q(y) = \frac{1}{\det(DF)(x)}q(x)$$

with $y = F(x)$.

- weak form: $\int_{\Omega} \langle A \nabla_x u, \nabla_x \phi \rangle \omega^2 q u \phi \, dx = 0$ if $\phi = 0$ near $\partial \Omega$
- change vars: $\int_{\Omega} \langle F_*(A) \nabla_y u, \nabla_y \phi \rangle \omega^2 F_*(q) u \phi \, dy = 0$
- F = id at bdry \Rightarrow chg of vars doesn't affect bdry data

The singular change-of-variable-based cloak

Radial version, for simplicity only: domain is B_2 , cloaked region is B_1 .

Choose properties of the cloak to be $A_c = F_*1$ and $q_c = F_*1$, where F "blows up" the origin to B_1 :

$$F(x) = \left(1 + \frac{1}{2}|x|\right) \frac{x}{|x|}$$

Formally B_1 is cloaked. In fact, if

 $(A(y), q(y)) = \begin{cases} F_*(1, 1) & \text{for } y \in B_2 \setminus B_1 \\ \text{arbitrary} & \text{for } y \in B_1 \end{cases}$

we have, using F^{-1} as our change of variable,

$$\int_{B_2} \langle A(y) \nabla_y u, \nabla_y \phi \rangle - \omega^2 q(y) u \phi \, dy = \int_{B_2} \langle \nabla_x u, \nabla_x \phi \rangle - \omega^2 u \phi \, dx$$

since F^{-1} shrinks B_1 (the region being cloaked) to a point.

Is this correct? F and F^{-1} are very singular.

Remarks on the singular cloak

• This scheme requires exotic materials. Recall that

$$(A_c(y), q_c(y)) = F_*(1, 1)$$
at $y = F(x)$

where *F* blows up a point to the region being cloaked. The material is anisotropic and singular: as $|y| \downarrow 1$, $A_c(y)$ has

- radial eigenvector with eigenvalue $\sim (|y| 1)^{n-1}$
- tangential eigenspace with eigenvalue $\sim (|y| 1)^{n-3}$,

and $q_c(y) \sim (|y| - 1)^{2(n-1)}$.

- Analysis is possible, but requires suitable notion of "weak solution" (Greenleaf, Kurylev, Lassas, Uhlmann, CMP 2008).
- The singular cloak makes me uncomfortable. We usually deal with singularities by smoothing them. Why not here?

A regularized version

Same idea, with more regular F. Domain B_2 , cloaked region B_1 .

Approx cloak uses $(A_c, q_c) = F_*(1, 1)$, where $F = F_\rho$ is less singular:

- *F* is cont's and piecewise smooth
- it expands B_{ρ} to B_1 while preserving B_2
- F(x) = x at the outer bdry |x| = 2.

Impact of contents of B_1 on bndry data becomes, via change of vars, effect of small inclusion with uncontrolled properties. In fact, if

$$(A(y), q(y)) = \begin{cases} F_*(1, 1) & \text{for } y \in B_2 \setminus B_1 \\ A_D(y), q_D(y) & \text{for } y \in B_1 \end{cases}$$

then, using F^{-1} as change of variable,

$$\begin{split} \int_{B_2} \langle A(y) \nabla_y u, \nabla_y \phi \rangle &- \omega^2 q(y) u \phi \, dy = \int_{B_2 \setminus B_\rho} \langle \nabla_x u, \nabla_x \phi \rangle - \omega^2 u \phi \, dx + \\ &\int_{B_\rho} \langle F_*^{-1}(A_D) \nabla_x u, \nabla_x \phi \rangle - \omega^2 F_*^{-1}(q_D) u \phi \, dx. \end{split}$$

Approximate cloaking ⇔ small inclusion with uncontrolled content has little effect on bndry meas.

A regularized version

Same idea, with more regular F. Domain B_2 , cloaked region B_1 .

Approx cloak uses $(A_c, q_c) = F_*(1, 1)$, where $F = F_\rho$ is less singular:

• F is cont's and piecewise smooth

• it expands B_{ρ} to B_1 while preserving B_2

• F(x) = x at the outer bdry |x| = 2.

Impact of contents of B_1 on bndry data becomes, via change of vars, effect of small inclusion with uncontrolled properties. In fact, if

$$(A(y),q(y)) = \begin{cases} F_*(1,1) & \text{for } y \in B_2 \setminus B_1 \\ A_D(y),q_D(y) & \text{for } y \in B_1 \end{cases}$$

then, using F^{-1} as change of variable,

$$\begin{split} \int_{B_2} \langle A(y) \nabla_y u, \nabla_y \phi \rangle &- \omega^2 q(y) u \phi \, dy = \int_{B_2 \setminus B_\rho} \langle \nabla_x u, \nabla_x \phi \rangle - \omega^2 u \phi \, dx + \\ &\int_{B_\rho} \langle F_*^{-1}(A_D) \nabla_x u, \nabla_x \phi \rangle - \omega^2 F_*^{-1}(q_D) u \phi \, dx. \end{split}$$

Approximate cloaking \Leftrightarrow small inclusion with uncontrolled content has little effect on bndry meas.

Frequency 0 is OK

Singular cloak works at frequency 0 (Greenleaf, Lassas, Uhlmann 2003) Explanation via regularization (Kohn, Shen, Vogelius, Weinstein 2008):

 $abla \cdot (A \nabla u) = 0$ in Ω , $\Lambda_A = DN$ map

Theorem: If $A \equiv 1$ outside B_{ρ} , then $\|\Lambda_A - \Lambda_1\| \leq C\rho^n$ in space dim n.

- Use operator norm, $\Lambda_A : H^{-1/2}(\partial \Omega) \to H^{1/2}(\partial \Omega)$. Natural choice, since finite-energy solutions of $\nabla \cdot (A \nabla u) = 0$ have Dirichlet data in $H^{1/2}$ and Neumann data in $H^{-1/2}$.
- Estimate is well-known when inclusion has constant conductivity even for the extreme cases, when A = 0 or $A = \infty$ in B_{ρ} .
- Variational principle implies that effect of any inclusion is bracketed by effect of extreme inclusions.

So: our regularized scheme almost cloaks B_1 , if ρ is small.

Finite frequency is different

Recall: approx cloaking achieved \Leftrightarrow small inclusion with uncontrolled content has little effect on bndry meas.

But: at finite frequency a small inclusion can have huge effect, due to resonance. Consider radial setting:

$$(A,q) = \left\{ egin{array}{cc} (1,1) & ext{in } B_2 \setminus B_
ho \ (A_
ho,q_
ho) & ext{in } B_
ho \end{array}
ight.$$

Separate variables:

$$\begin{aligned} u &= \sum \alpha_k J_k \left(\omega r \sqrt{q_\rho / A_\rho} \right) e^{ik\theta} & \text{for } r < \rho \\ u &= \sum \left(\beta_k J_k(\omega r) + \gamma_k H_k^{(1)}(\omega r) \right) e^{ik\theta} & \text{for } \rho < r < 2 \end{aligned}$$

At freq k: 3 unknowns α_k , β_k , γ_k and 3 eqns:

1 eqn at r = 2 to match Neumann data 2 eqns at $r = \rho$ to impose transmission bdry cond

Hence unique solution if eqns are not redundant. But eqns are redundant at special A_{ρ} , q_{ρ} (resonances).

Greenleaf, Kurylev, Lassas, Uhlmann (CMP 2008) studied cloaking for 3D Helmholtz by (singular) change of variables. Their conclusion: if

$$(A,q) = \left\{ egin{array}{cc} F_*(1,1) & ext{in } \Omega \setminus D \ (A_D,q_D) & ext{in } D \end{array}
ight.$$

then $\nabla \cdot (A \nabla u) + \omega^2 q u = 0$ exactly when

- outside the cloaked region, u(y) = v(x) where y = F(x) and $\Delta v + \omega^2 v = 0$ in Ω .
- inside the cloaked region, u solves given PDE with Neumann data 0

Indicates cloaking (since v is indep of inclusion). But clearly problematic if Neumann problem for cloaked region has a resonance.

Resolution: include a lossy layer

Before mapping: uncontrolled inclusion of size ρ coated by isotropic lossy shell of width ρ

After mapping: uncontrolled inclusion of size $\frac{1}{2}$ coated by isotropic lossy shell of width $\frac{1}{2}$

$$A, q = \begin{cases} (1,1) & \text{for } |x| > 2\rho \\ (1,1+i\beta) & \text{for } \rho < |x| < 2\rho \\ \text{arbitrary} & \text{for } |x| < \rho \end{cases} \quad A, q = \begin{cases} F_*(1,1) & \text{for } |y| > 1 \\ F_*(1,1+i\beta) & \text{for } \frac{1}{2} < |y| < 1 \\ \text{arbitrary} & \text{for } |y| < \frac{1}{2} \end{cases}$$

Successful \Leftrightarrow presence of inclusion has little effect on DN map, regardless of inclusion contents.

Our results:

- best choice of damping is $\beta\sim\rho^{-2}$
- effect of inclusion is $1/|\log \rho|$ in 2D, $\sqrt{\rho}$ in 3D.

Suboptimal in 3D? Intuition and numerics suggest ρ not $\sqrt{\rho}$.

Results for 2D Helmholtz

Claim: an arbitrary but small inclusion, coated by a lossy layer, has little effect on bdry meas, if loss parameter is $\beta \sim \rho^{-2}$.

$$A, q = \begin{cases} (1, 1 + i\rho^{-2}) & \text{for } \rho < |x| < 2\rho \\ \text{arbitrary pos} & \text{for } |x| < \rho \end{cases}$$

<u>Theorem</u>. When embedded in a uniform medium (A = 1, q = 1), the effect of such an inclusion is bounded by

$$\|\Lambda_{A,q} - \Lambda_{1,1}\| \le C_{\omega}/|\log \rho|.$$

LHS is operator norm from $H^{-1/2}$ to $H^{1/2}$ (natural norms for Neumann and Dirichlet data of finite-energy solutions). If $f = \sum a_k e^{ik\theta}$,

$$\|f\|_{H^{-1/2}}^2 = \sum |k|^{-1} |a_k|^2, \quad \|f\|_{H^{1/2}}^2 = \sum |k| |a_k|^2.$$

3D is better

For 2D Helmholtz, cloaking error was $C/|\log \rho|$. Linked to fund soln of Laplacian.

For 3D Helmholtz, obvious guess is $C\rho$. Supported by numerics. However our method gives only $C\sqrt{\rho}$: for

$$abla \cdot ({\it A}
abla u_
ho) + \omega^2 {\it q} u_
ho = {\sf 0} \ {\sf in} \ \Omega \subset {\it R}^3$$

with

$$\left\{ \begin{array}{ll} {A=1,q=1} & \text{in }\Omega\setminus B_{2\rho}\\ {A=1,q=1+i\rho^{-2}} & \text{in }B_{2\rho}\setminus B_{\rho}\\ \text{arbitrary real, positive} & \text{in }B_{\rho}. \end{array} \right.$$

we get

$$\|\Lambda_{A,q} - \Lambda_{1,1}\| \leq C_{\omega}\sqrt{\rho}.$$

Overview of analysis

Recall eqn:

$$abla \cdot (\mathbf{A} \nabla u_{\rho}) + \omega^2 q u_{\rho} = \mathbf{0} \text{ in } \Omega$$

where

 $\left\{ \begin{array}{ll} {A=1,q=1} & \text{ in } \Omega \setminus B_{2\rho} \\ {A=1,q=1+i\beta} & \text{ in } B_{2\rho} \setminus B_{\rho} \\ \text{ arbitrary real, positive } & \text{ in } B_{\rho}. \end{array} \right.$

I. Compare Helmholtz in shell $\Omega \setminus B_{2\rho}$ to Helmholtz in Ω .

Show that inclusion has little effect on boundary measurements, unless something wild is happening at $\partial B_{2\rho}$.

II. Obtain global control using lossiness of $B_{2\rho} \setminus B_{\rho}$.

Estimate holds even when lossless problem is resonant.

Outline of step I

I. Compare Helmholtz in shell $\Omega \setminus B_{2\rho}$ to Helmholtz in Ω .

Consider

$$\begin{aligned} \Delta u_0 + \omega^2 u_0 &= 0 \text{ in } \Omega \\ \Delta u_\rho + \omega^2 u_\rho &= 0 \text{ in } \Omega \setminus B_{2\rho} \end{aligned}$$

with same Neumann data ψ at $\partial \Omega$, and Dir data ϕ for u_{ρ} at $\partial B_{2\rho}$. Then

$$\|u_{\rho}-u_{0}\|_{H^{1/2}(\partial\Omega)}\leq \textit{Ce}(\rho)\left(\|\psi\|_{H^{-1/2}(\partial\Omega)}+\|\phi(2\rho\,\cdot\,)\|_{H^{-1/2}(\partial\mathcal{B}_{1})}\right)$$

where

$$m{e}(
ho) = \left\{egin{array}{cc} 1/|\log
ho| & ext{in dim 2} \
ho & ext{in dim 3}. \end{array}
ight.$$

Main idea: if behavior at inclusion edge is uniform, then effect is like a small hole with a Dirichlet bdry condition.

If behavior at inclusion edge is oscillatory in θ , influence decays faster.

Outline of step II

II. Control u_{ρ} on $\partial B_{2\rho}$, if annulus $\rho < |x| < 2\rho$ is lossy. Let

$$abla \cdot (\mathbf{A} \nabla u_{
ho}) + \omega^2 q u_{
ho} = \mathbf{0} \text{ in } \Omega,$$

 $\left\{ \begin{array}{ll} {A=1,q=1} & \text{for } x\in \Omega\setminus B_{2\rho}\\ {A=1,q=1+i\beta} & \text{for } \rho<|x|<2\rho\\ \text{any real, pos values} & \text{for } |x|<\rho. \end{array} \right.$

using Neumann data ψ at $\partial \Omega$. Then (in dim *n*)

$$\|u_{\rho}(2\rho \cdot)\|_{H^{-1/2}(\partial B_{1})} \leq C(1 + (1+\beta)\rho^{2}) \frac{1}{\rho^{n/2}\sqrt{\beta}} \left(\|\psi\|_{H^{-1/2}(\partial \Omega)} + \|u_{\rho}\|_{H^{1/2}(\partial \Omega)}\right)$$

Main ideas:

1) Imaginary part of energy identity gives

$$\omega^2 \beta \int_{B_{2\rho} \setminus B_{\rho}} |u_{\rho}|^2 \leq \left(\|\psi\|_{H^{-1/2}(\partial\Omega)} + \|u_{\rho}\|_{H^{1/2}(\partial\Omega)} \right)^2$$

2) Elliptic estimate for $\Delta u + \omega^2 (1 + i\beta)u = 0$ on $B_{2\rho} \setminus B_{\rho}$ gives:

$$\|u_{\rho}(2\rho \cdot)\|_{H^{-1/2}(\partial B_{1})}^{2} \leq C(1 + (1 + \beta)\rho^{2})^{2}\rho^{-n}\int_{B_{2\rho}\setminus B_{\rho}}|u_{\rho}|^{2}$$

Outline of step II

II. Control u_{ρ} on $\partial B_{2\rho}$, if annulus $\rho < |x| < 2\rho$ is lossy. Let

$$abla \cdot (\mathbf{A} \nabla u_{
ho}) + \omega^2 q u_{
ho} = \mathbf{0} \text{ in } \Omega,$$

 $\left\{ \begin{array}{ll} {A=1,q=1} & \text{for } x\in \Omega\setminus B_{2\rho}\\ {A=1,q=1+i\beta} & \text{for } \rho<|x|<2\rho\\ \text{any real, pos values} & \text{for } |x|<\rho. \end{array} \right.$

using Neumann data ψ at $\partial \Omega$. Then (in dim *n*)

$$\|u_{\rho}(2\rho \cdot)\|_{H^{-1/2}(\partial B_{1})} \leq C(1 + (1+\beta)\rho^{2}) \frac{1}{\rho^{n/2}\sqrt{\beta}} \left(\|\psi\|_{H^{-1/2}(\partial \Omega)} + \|u_{\rho}\|_{H^{1/2}(\partial \Omega)}\right)$$

Main ideas:

1) Imaginary part of energy identity gives

$$\omega^2 \beta \int_{B_{2\rho} \setminus B_{\rho}} |u_{\rho}|^2 \leq \left(\|\psi\|_{H^{-1/2}(\partial\Omega)} + \|u_{\rho}\|_{H^{1/2}(\partial\Omega)} \right)^2$$

2) Elliptic estimate for $\Delta u + \omega^2 (1 + i\beta)u = 0$ on $B_{2\rho} \setminus B_{\rho}$ gives:

$$\|u_{\rho}(2\rho \cdot)\|_{H^{-1/2}(\partial B_{1})}^{2} \leq C(1 + (1 + \beta)\rho^{2})^{2}\rho^{-n}\int_{B_{2\rho}\setminus B_{\rho}}|u_{\rho}|^{2}$$

Outline of step II

II. Control u_{ρ} on $\partial B_{2\rho}$, if annulus $\rho < |x| < 2\rho$ is lossy. Let

$$abla \cdot (\mathbf{A} \nabla u_{
ho}) + \omega^2 q u_{
ho} = \mathbf{0} \text{ in } \Omega,$$

 $\left\{ \begin{array}{ll} A=1, q=1 & \text{for } x\in \Omega\setminus B_{2\rho}\\ A=1, q=1+i\beta & \text{for } \rho<|x|<2\rho\\ \text{any real, pos values} & \text{for } |x|<\rho. \end{array} \right.$

using Neumann data ψ at $\partial \Omega$. Then (in dim *n*)

$$\|u_{\rho}(2\rho \cdot)\|_{H^{-1/2}(\partial B_{1})} \leq C(1 + (1+\beta)\rho^{2}) \frac{1}{\rho^{n/2}\sqrt{\beta}} \left(\|\psi\|_{H^{-1/2}(\partial \Omega)} + \|u_{\rho}\|_{H^{1/2}(\partial \Omega)}\right)$$

Main ideas:

1) Imaginary part of energy identity gives

$$\omega^2 \beta \int_{B_{2\rho} \setminus B_{\rho}} |u_{\rho}|^2 \leq \left(\|\psi\|_{H^{-1/2}(\partial\Omega)} + \|u_{\rho}\|_{H^{1/2}(\partial\Omega)} \right)^2$$

2) Elliptic estimate for $\Delta u + \omega^2 (1 + i\beta)u = 0$ on $B_{2\rho} \setminus B_{\rho}$ gives:

$$\|u_{\rho}(2\rho \cdot)\|^{2}_{H^{-1/2}(\partial B_{1})} \leq C(1 + (1 + \beta)\rho^{2})^{2}\rho^{-n}\int_{B_{2\rho}\setminus B_{\rho}}|u_{\rho}|^{2}$$

Putting it together

Goal: compare solutions of

$$\Delta u_0 + \omega^2 u_0 = 0$$
 and $\nabla (A \nabla u_\rho) + \omega^2 q u_\rho = 0$ in Ω

with same Neumann data ψ at $\partial \Omega$.

Step 1 gave $\|u_{\rho} - u_{0}\|_{H^{1/2}(\partial\Omega)} \leq Ce(\rho) \left(\|\psi\|_{H^{-1/2}(\partial\Omega)} + \|u_{\rho}(2\rho \cdot)\|_{H^{-1/2}(\partial B_{1})} \right).$ Step 2 with $\beta \sim \rho^{-2}$ gives $\|u_{\rho}(2\rho \cdot)\|_{H^{-1/2}(\partial B_{1})} \leq C\rho^{1-\frac{n}{2}} \left(\|\psi\|_{H^{-1/2}(\partial\Omega)} + \|u_{\rho}\|_{H^{1/2}(\partial\Omega)} \right)$

Combining gives

 $\begin{aligned} \|u_{\rho} - u_{0}\|_{H^{1/2}(\partial\Omega)} &\leq Ce(\rho) \left(\rho^{1-\frac{\theta}{2}} \|\psi\|_{H^{-1/2}(\partial\Omega)} + \rho^{1-\frac{\theta}{2}} \|u_{\rho}\|_{H^{1/2}(\partial\Omega)}\right) \\ \text{Eliminate last RHS term using } \|u_{\rho}\| &\leq \|u_{\rho} - u_{0}\| + \|u_{0}\| \text{ to get} \\ \|u_{\rho} - u_{0}\|_{H^{1/2}(\partial\Omega)} &\leq Ce(\rho)\rho^{1-\frac{\theta}{2}} \|\psi\|_{H^{-1/2}(\partial\Omega)} \end{aligned}$

Thus: perturbation of boundary operator is at most

$$\leq Ce(
ho)
ho^{1-rac{n}{2}} = \left\{ egin{array}{c} C/|\log
ho| & n=2\ C\sqrt{
ho} & n=3 \end{array}
ight.$$

Putting it together

Goal: compare solutions of

$$\Delta u_0 + \omega^2 u_0 = 0$$
 and $\nabla (A \nabla u_\rho) + \omega^2 q u_\rho = 0$ in Ω

with same Neumann data ψ at $\partial \Omega$.

Step 1 gave $\|u_{\rho} - u_0\|_{H^{1/2}(\partial\Omega)} \leq Ce(\rho) \left(\|\psi\|_{H^{-1/2}(\partial\Omega)} + \|u_{\rho}(2\rho \cdot)\|_{H^{-1/2}(\partial B_1)} \right).$ Step 2 with $\beta \sim \rho^{-2}$ gives

$$\|u_{\rho}(2\rho \cdot)\|_{H^{-1/2}(\partial B_{1})} \leq C \rho^{1-\frac{n}{2}} \left(\|\psi\|_{H^{-1/2}(\partial \Omega)} + \|u_{\rho}\|_{H^{1/2}(\partial \Omega)} \right)$$

Combining gives

$$\|u_{\rho} - u_{0}\|_{H^{1/2}(\partial\Omega)} \leq Ce(\rho) \left(\rho^{1-\frac{n}{2}} \|\psi\|_{H^{-1/2}(\partial\Omega)} + \rho^{1-\frac{n}{2}} \|u_{\rho}\|_{H^{1/2}(\partial\Omega)}\right)$$

Eliminate last RHS term using $||u_{\rho}|| \leq ||u_{\rho} - u_{0}|| + ||u_{0}||$ to get

$$\|u_{\rho} - u_{0}\|_{H^{1/2}(\partial\Omega)} \leq Ce(\rho)\rho^{1-\frac{n}{2}}\|\psi\|_{H^{-1/2}(\partial\Omega)}$$

Thus: perturbation of boundary operator is at most

$$d \leq \textit{Ce}(
ho)
ho^{1-rac{n}{2}} = \left\{egin{array}{cc} C/|\log
ho| & n=2\ C\sqrt{
ho} & n=3 \end{array}
ight.$$

Conclusions

How well does the change-of-variable-based cloaking scheme work?

- Equivalent to: how much can a small inclusion affect bdry meas?
- At freq 0: error estimate ρ^n in dim *n* (no damping)
- At freq \neq 0:
 - complete failure if object to be cloaked is resonant
 - difficulty fixed by introducing lossy shell
 - error estimate $1/|\log \rho|$ in 2D, $\sqrt{\rho}$ in 3D.

Examples and numerics to be presented by Onofrei.