Creating horizons for light using
metamaterials
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Particles and Gravitation

In quantum field theory, the notion of a particle is
founded on the Poincar¢ symmetry of flat space-time.

Particles: irreducible representations of the Poincaré group.

In curved space-time, no symmetry (in general).

“Particles” have no meaning in curved space-time.

Define particles in asymptotically flat regions.
Solve field equation for modes.
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Interpretation: Gravitational fields create particles.
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Horizons create particles.



Was Hawking right?

Event

horizon Low k
// Photon wavelengths that reach a distant
observer are red-shifted by a factor o e"*"

Blue-shift
backwards Arbitrarily large frequencies in the past
in time — Arbitrarily large masses

— Arbitrarily large gravitational effects

But we ignored back-reaction on the black hole!

The Hawking effect would appear to depend on energies beyond

the Planck energy +hc’ /G =10"GeV
But we don’t know how to calculate at such energies: we would need quantum gravity.

“Trans-Planckian™ problem
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Is space-time a fluid?

Unruh (1981): Sound propagation in a moving fluid
1s equivalent to a scalar field in the curved space-time

given by |
ct-vt v
guv - p Uj —51.1.
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Estimate for BECs: 7~ 10nK.
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Evolution

Standard theory of the Hawking effect
predicts a thermal spectrum of phonons
with temperature

k — slope of velocity
(“surface gravity™)
at horizon

What about “trans-Planckian” issue?
This 1s known physics.



Time

White holes and black holes

White hole Black hole

horizon horizon

High k

Low k&

Low &

Regions where speed u of medium is -c¢/n are
horizons for right-moving light — analogues of
black holes and white holes. White hole is
time-reverse of black hole.

At horizon light is bunched up and stopped —
Wavelength decreases, wave vector k increases.
In real materials, this blue-shifting is limited
by dispersion.
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Hawking effect with dispersion

Dispersion relation:
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Horizons in optical fibres

Due to Kerr effect, a pulse in an optical fiber creates a change in refractive index that
moves at the speed of light: effective moving medium.

A weak probe beam can be slowed to a standstill in the frame of the pulse — a horizon.

n=n,+0n, on«l(z,f). White hole Black hole
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T=t= =y u-—speedofpulse | A before, Horizon mixes positive and
: . dispersion (normal) || negative lab frequencies —
Equation for probe: o limits blue-shifting. || Hawking Effect.
(O — 0;)°A = &gnz&A Driven by steepness of

pulse (“surface gravity™) at

Dispersion relation: ¢’ =1 - n(w)u w. horizon. White-hole horizon
. c ~ . radiates more because of
Frequency in Frequency in pulse self-steepening.

pulse frame (conserved) lab frame



Few-cycle pulses in microstructured fibres
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Frequency-shifting at the horizons

Choose probe wavelength such that a group-velocity horizon exists.

Dispersion D [ps/(nm kmj}]
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Power density [dBm]

Observation of blue-shifting at the white-hole horizon

CW diode laser,
tunable 1460 to 1540nm

cw probe laser (IR)

70fs (FWHM) pulses
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[Philbin et al., Science 319, 1367 (2008)]
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Hawking radiation in an optical fiber?
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=0 innear UV (=300nm) where phase velocity ¢/n matches group velocity u of pulse —

a phase-velocity horizon. Each @ " gives two lab frequencies, one positive and one negative,
which are mixed by the horizon. Creation of correlated pairs of photons.

Linearize on around nu / Result: thermal Spectrum ’ ha,
. . -—=0aT . kT =22
phase-velocity horizon c in pulse frame B .
ho 1 don
Temperature in lab frame: k,7 =—, a=-—— I does not depend on the
27T Oon 0t | _, magnitude of (very small) dn.

If steepness at horizon is ~pulse carrier frequency, then 7'~ 1000K.



Power density [dBm]

Horizon physics: astrophysics, fluid mechanics, optics...
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