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Motivation 

• Light propagation in a nonlinear medium
– z is the direction of propagation
– transverse coordinate

• Look for solitons – waves that maintain their 
shape along the propagation in z
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Solitons

• Appear in
– Nonlinear optics
– Cold atoms – Bose-Einstein Condensation (BEC) 
– Solid state
– Water waves
– Plasma physics

• Applications – communications, quantum 
computing, …



Soliton stability
• Ideally – get same soliton at the other end

• In practice, soliton must be stable (robust) under 
perturbations

z

Nonlinear medium

x
laser

E field

E field



Stability analysis

• In this talk, a different approach
– Qualitative approach: characterize instability dynamics
– Quantitative approach: quantify strength of 

stability/instability

• KEY question – is the soliton stable?
– hundreds of papers…

• Typical answer – yes (stable)/no (unstable)
– What is the instability dynamics?



Outline of the talk

• Solitons in Nonlinear Schrödinger (NLS) Eq. 

• Stability theory

• Qualitative approach

• Quantitative approach



Paraxial propagation – NLS model

• A – amplitude of electric field 
• Initial condition:

– z is a “time”-like coordinate  
• Competition of diffraction (                         )  and 

focusing nonlinearity (F)
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Typical (self-) focusing nonlinearities

• Cubic (Kerr) nonlinearity

• Cubic-quintic nonlinearity

• Saturable nonlinearity
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Physical configurations – slab/planar waveguide

•
• no dynamics in y direction
• 1+1 dimensions (x,z)
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Physical configurations – bulk medium

•
• 2+1 dimensions (x+y,z)
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Nonlinear medium
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Physical configurations – pulses in bulk medium

•
• β2 < 0,  anomalous group velocity dispersion (GVD)
• 3+1 dimensions (x+y+t,z)
• Spatio-temporal soliton = “Light bullets”
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• Solitons are of the form

• Do not change their shape during propagation (in z)
• Exhibit perfect balance between diffraction and  

nonlinearity
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2 2( , ) (| | ) 0ziA z x A F A A+∇ + =



• Explicit solution
• (propagation const.) proportional to

– amplitude
– inverse width

Example – 1D solitons in a Kerr medium
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Outline of the talk

• Solitons in Nonlinear Schrödinger Eq.

• Stability theory

• Qualitative approach

• Quantitative approach



Stability theory

• Vakhitov-Kolokolov (1973): necessary condition 
for stability of 

is the slope condition
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Example: homogeneous Kerr medium

•
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Stability in a d=1 Kerr medium

• Incident beam is a perturbed d=1 soliton

• Solution stays close to the soliton
• 1D Solitons are stable!
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Instability in a d=2 Kerr medium

•

• collapse at a finite distance!
• 2D Solitons are unstable
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• Incident beam is a perturbed d=2 soliton

0 1.2
0

0.2

0 1.2
0

50

z z

| ( ) |A z 1| ( ) |A z −

amplitude width



• Vakhitov-Kolokolov (1973): Slope condition is 
necessary for stability

• Is it also sufficient?



• Weinstein (1985-6), Grillakis, Shatah, Strauss 
(1987-9):

1. Slope (VK) condition

2. Spectral condition: the operator

must have only one negative eigenvalue
• Two conditions are necessary and sufficient for 

stability

Rigorous stability theory (u>0)

2 2( )L G uν+ = −∇ + −



• Only one negative eigenvalue λmin

• Spectral condition is satisfied

continuous spectrummin 0λ < 0λ

0 ν

Spectrum of L+
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Summary - stability in homogeneous medium

• Spectral condition is always satisfied 
• Stability determined by slope (VK) condition
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Inhomogeneous media



Light propagation in inhomogeneous medium

• Since late 1980’s: interest in inhomogeneous media
– E. Yablonovitch, S. John (1986) – photonic crystals
– Christodoulides & Joseph (1988) – discrete solitons
– ...

• Goals:
– Stabilize beams in high dimensions (“Light bullets”)
– Applications – communications (switching, routing, …)



• Varying linear refractive index
– Waveguide arrays / photonic lattices

Inhomogeneous media
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• Varying nonlinear refractive index
– Novel materials

Inhomogeneous media
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• This study – modulation in     only
• Refractive index  =  – Potential 

NLS in inhomogeneous media

x



• This study – modulation in     only
• Refractive index  =  – Potential 

– arbitrary potentials (Vnl, Vl)
• periodic/disordered potentials, periodic potentials with defects, 

single/multi-waveguide potentials etc. 

– any nonlinearity F
– any dimension d

( )

NLS in inhomogeneous media
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Inhomogeneities in BEC

• Same equation (Gross-Pitaevskii) in BEC

• Dynamics in time (not z)
•
• Inhomogeneities created by

– Magnetic traps
– Feshbach resonance
– Optical lattices
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How do inhomogeneities
affect stability?



“Applied” approach

• Slope (VK) condition
• Numerics
• Ignore spectral condition

Rigorous approach

• Slope (VK) condition
• Spectral condition

) 2( ( ) (| | ) ( )nl l
VL L V x G A V x+ + += +

Typical result – soliton stable (yes)/unstable (no)



Qualitative approach

• Characterize the instability dynamics
• Key observation: instability dynamics depends 

on which condition is violated
– Look at each condition separately 

• Results for ground state solitons only (u>0)



Outline of the talk

• Solitons in Nonlinear Schrödinger Eq.

• Stability theory

• Qualitative approach
– Slope condition
– Spectral condition

• Quantitative approach



Instability due to violation 
of slope condition



Violation of slope condition

• d=2 homogeneous Kerr medium 
–
– Slope = 0, i.e., instability

–
• Collapse 

–
• Total diffraction
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• d=2 Kerr medium with potential
– Stable and unstable branches

–
– 1% perturbation          width decrease by factor of 15

Violation of slope condition – cont.
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Violation of slope condition – cont.

Conclusion:
violation of slope condition focusing instability
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Instability due to violation 
of spectral condition



Spectral condition

• The operator

must have only one negative eigenvalue

• No potential                  : spectral condition satisfied
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• With potential:
– remains negative
– continuous spectrum remains positive
– only        can become negative

• Spectral condition determined by          
• Spectral condition not automatically satisfied
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lattice

Generic families of solitons

soliton

Soliton at lattice min. Soliton at lattice max.



Sign of λ0
(V)
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• Numerical/asymptotic/analytic observation
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Sign of λ0
(V)
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• Numerical/asymptotic/analytic observation

λ0
(V) < 0 for solitons at a lattice 

max. (potential barrier)
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• Stability only at potential min. – solitons are more 
“comfortable” at a potential min. (well) than at a 
potential max. (barrier)
– stay near potential min.
– tend to move from potential max. to potential min.

• Different type of instability
– Lateral location rather width

x

Physical intuition



• Soliton centered at 
a lattice min. 
– stays at lattice min.
– lateral stability
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• Soliton centered at a 
lattice max. 
– moves from lattice max. 

to lattice min.
– drift instability

x

Numerical demonstration

Center of 

mass

( 0 , ) ( )
sh ift

A z x u x δ= = −Input beam:

x

2x x A= ∫“Center of mass”:



Conclusion:
violation of spectral condition drift instability
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Mathematical intuition

• Eigenfunction associated with λ0
(V) is odd

+ =

eigenfunction

x



Mathematical intuition

• Eigenfunction associated with λ0
(V) is odd

+ =

eigenfunctionsoliton

xx x



Mathematical intuition

• Eigenfunction associated with λ0
(V) is odd

• Its growth causes lateral shift of beam center

+ =

eigenfunctionsoliton

xx x



Mathematical intuition

• Eigenfunction associated with λ0
(V) is odd

• Its growth causes lateral shift of beam center

+ =

eigenfunctionsoliton

xx x



Qualitative approach – summary

• Characterization of instabilities
– Violation of slope condition               focusing instability
– Violation of spectral condition               drift instability

• Distinction between instabilities is useful for more 
complex lattices



• Created experimentally by optical induction

V

Example



• Created experimentally by optical induction
• Consider solitons centered at a shallow local 

maximum

V

Example



Example
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• Narrow 
soliton
centered at a 
lattice max.

x

y

Example



• Narrow 
soliton
centered at a 
lattice max.
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Example
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y

• Wide solitons:
soliton
centered at a 
lattice max.
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Example

Drift instability
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• Wide solitons:
soliton
centered at a 
lattice max.

• Narrow 
soliton
centered at a 
lattice max.
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Drift instability Stability
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Drift instability Stability
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lattice max.



• Narrow 
solitons: 
centered at a 
lattice max.

• Wide solitons:
effectively
centered at a 
lattice max. min.x

y

Example

Drift instability Stability
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• Narrow 
solitons: 
centered at a 
lattice max.

• Wide solitons:
effectively
centered at a 
lattice max. min.x

y

Example

x

y

At which width is the transition 
between drift instability and stability?
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• Wide solitons:
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centered at a 
lattice min.
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centered at a 
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• Wide solitons:
effectively
centered at a 
lattice min.

• Narrow 
solitons: 
centered at a 
lattice max.
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Conclusion

• Dynamics “deciphered” using the qualitative 
approach
– “effective centering” determines violation/satisfaction 

of spectral condition 
– In turn, determines dynamics of “center of mass”
– Dynamics is determined by slope condition



Outline of the talk

• NLS and solitons - review

• Stability theory

• Qualitative approach
– Slope condition – width instability
– Spectral condition – drift instability

• Quantitative approach



Motivation: 2d nonlinear lattices

• Can the nonlinear potential stabilize the 
solitons?
– spectral condition satisfied only at potential min. 
– slope condition satisfied only for 

• narrow solitons
• specially designed potential

( ) ( )2 2, , 1 | |( , ) 0nz lViA z A xx yy A A+∇ + − =



Narrow solitons in 2d nonlinear lattices
• u(x,y) is a stable narrow soliton
• Test stability of u(x,y) numerically: 

– add extremely small perturbation  

collapse instability!

( 0, , ) 1.0001 ( , )A z x y u x y= =

0 20
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Narrow solitons in 2d nonlinear lattices
• u(x,y) is a stable narrow soliton
• Test stability of u(x,y) numerically: 

– add extremely small perturbation  

collapse instability!

( 0, , ) 1.0001 ( , )A z x y u x y= =

0 20

am
pl

itu
de

z

What is going on?



Strength of stability
• Slope = 0           instability
• Slope > 0           stability

– What happens for a very small positive slope?
• Strength of stability determined by magnitude of 

slope
– small slope leads to weak stabilization
– stronger stability for larger slope 



Strength of stability: nonlinear lattices
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• Fixed input beam

• Change lattice 
– slope = 0.01  (stable)
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Strength of stability: nonlinear lattices

• Fixed input beam

• Change lattice 
– slope = 0.01  (stable)

– slope = 0.006  (less stable)
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Strength of stability: nonlinear lattices

• Fixed input beam

• Change lattice 
– slope = 0.01  (stable)

– slope = 0.006  (less stable)

– slope = 0.002  (unstable)

( 0) 1.0001 ( , )A z u x y= =
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• Fixed input beam

• Change lattice 
– slope = 0.01  (stable)

– slope = 0.006  (less stable)

– slope = 0.002  (unstable)

– slope = 0.0002  (even more unstable)
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Strength of stability: nonlinear lattices

A z u x y= =



0 80

am
pl

itu
de

z

Strength of stability: nonlinear lattices

• Fixed input beam

• Change lattice 
– slope = 0.01  (stable)

– slope = 0.006  (less stable)

– slope = 0.002  (unstable)

– slope = 0.0002  (even more unstable)

• Strength of stability is determined by magnitude of 
slope

( 0) 1.0001 ( , )A z u x y= =



Narrow solitons in 2d nonlinear lattices
• Original soliton was weakly stable

– Slope = 0.01
( 0) 1.0001 ( , )A z u x y= =
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Narrow solitons in 2d nonlinear lattices
• Original soliton was weakly stable

– Slope = 0.01

– Stability for a smaller perturbation 
• Soliton is “theoretically” stable, but “practically”

unstable  
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0 80
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• “Old” approach – check only sign of slope
• “New” quantitative approach – check also the 

magnitude of the slope.



Slope condition: “old” approach

instability stability

Discontinuous transition between stability and instability

0 Slope

width



instability stability

Continuous transition between stability and instability

0 Slope

Slope condition: quantitative approach

width



Spectral condition: “old” approach

instability stability

Discontinuous transition between stability and instability

0 λ0
(V)

drift



instability stability

Continuous transition between stability and instability

λ0
(V)

0

Spectral condition: quantitative approach

drift



instability stability

Continuous transition between stability and instability

λ0
(V)

0
Can we get an analytical prediction for the drift   
rate as a function of         ?

Spectral condition: quantitative approach

drift

λ0
(V)



• soliton width/potential period <<1 

• Can use perturbation analysis!

• Expand potential as

• Solve for 
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Narrow solitons – cont.

• Center of mass obeys an oscillator equation!

2

2
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Narrow solitons - cont.

• Use perturbation analysis to compute eigenvalue

• Combine with Ω2 = - 2dV''(0)ε2 and get:
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Narrow solitons – cont.
• Conclusion: 
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• But so far only for narrow beams 
• Can we compute the drift rate also for wider 

solitons?



Calculation of drift rate in a general setting

• Valid for
– any soliton width 
– any potential (periodic/non-periodic, single/multi waveguide, …)
– any nonlinearity (Kerr, cubic-quintic, saturable, …)
– any dimension
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• Soliton slightly shifted from lattice max.
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Examples of lateral dynamics (1)
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• Soliton slightly shifted from lattice max.
• Solution of oscillator equation

– Ω is the drift (=instability) rate

– agreement up to the lattice min.
– up to many diffraction lengths

Examples of lateral dynamics (1)

cosh( )x zδ= Ω
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Drift rates

• Excellent agreement between analysis and 
numerics

d=1, weak lattice

d=2, strong lattice 
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• So far, studied instability dynamics
• Oscillator equation good also for stability

dynamics 

Examples of lateral dynamics (2)

max      

max      

min      

z

– soliton moving at an  
angle from a lattice min.

sin( )tgx zθ
= Ω

Ω
• Solution of oscillator equation is

– Ω determines the maximal deviation (=strength of stability)

θ



Examples of lateral dynamics (2)

• d=2, periodic lattice

Kerr (cubic) medium Cubic-Quintic medium

0 200

max      

max      

min      

z / L
diff

0 10

<x
>

z / L
diff

max      

max      

min      

theory

numerics

sin( )tgx zθ
= Ω
Ω



Implications of quantitative study

• Experimental example (Morandotti et al. 2000): 
– experiment in a slab waveguide array 
– soliton centered at a lattice max. does not drift to a 

lattice min. over 18 diffraction lengths
• Explanation: absence of observable drift due to 

small drift rate
• Theoretical instability but practical stability



Summary
• Qualitative approach

– Slope condition            focusing instability
– Spectral condition           drift instability

• Quantitative approach
– continuous transition between stability and instability
– analytical formula for lateral dynamics
– still open: find analytical formula for width dynamics

• “Theoretical” vs. “practical” stability/instability
• Results valid for any physical configuration of 

lattice, dimension, nonlinearity
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