Uniform asymptotics for the effect of small inhomogeneities

Collaborator: H.M. Nguyen

Related to

Electromagnetic cloaking and near cloaking
Collaborators: R.V. Kohn, D. Onofrei, H. Shen, M.I. Weinstein

Representation Formula

$\forall y \in \partial \Omega, u_{\rho}(y)-u_{0}(y)=\rho^{n}|D|$

Representation Formula

$$
\forall y \in \partial \Omega, u_{\rho}(y)-u_{0}(y)=\rho^{n}|D| \quad \cdot \nabla_{x} N\left(x_{0}, y\right)
$$

$N(x, y)$ is the Neumann function for $\nabla \cdot\left(\sigma_{0} \nabla\right)$:

$$
\begin{aligned}
& \nabla_{x} \cdot\left(\sigma_{0} \nabla_{x} N(x, y)\right)=\delta_{y} \text { in } \Omega \\
& \left(\sigma_{0} \nabla_{x} N\right) \cdot \nu_{x}=\frac{1}{|\partial \Omega|} \text { on } \partial \Omega .
\end{aligned}
$$

Representation Formula

$\forall y \in \partial \Omega, u_{\rho}(y)-u_{0}(y)=\rho^{n}|D| M \nabla u_{0}\left(x_{0}\right) \cdot \nabla_{x} N\left(x_{0}, y\right)$
$N(x, y)$ is the Neumann function for $\nabla \cdot\left(\sigma_{0} \nabla\right)$:

$$
\begin{aligned}
& \nabla_{x} \cdot\left(\sigma_{0} \nabla_{x} N(x, y)\right)=\delta_{y} \text { in } \Omega \\
& \left(\sigma_{0} \nabla_{x} N\right) \cdot \nu_{x}=\frac{1}{|\partial \Omega|} \text { on } \partial \Omega .
\end{aligned}
$$

M is the "rescaled" polarization matrix

Representation Formula

$\forall y \in \partial \Omega, u_{\rho}(y)-u_{0}(y)=\rho^{n}|D| M \nabla u_{0}\left(x_{0}\right) \cdot \nabla_{x} N\left(x_{0}, y\right)+o\left(\rho^{n}\right)$
$N(x, y)$ is the Neumann function for $\nabla \cdot\left(\sigma_{0} \nabla\right)$:

$$
\begin{aligned}
& \nabla_{x} \cdot\left(\sigma_{0} \nabla_{x} N(x, y)\right)=\delta_{y} \text { in } \Omega \\
& \left(\sigma_{0} \nabla_{x} N\right) \cdot \nu_{x}=\frac{1}{|\partial \Omega|} \text { on } \partial \Omega .
\end{aligned}
$$

M is the "rescaled" polarization matrix
GIVEN A FIXED σ_{0} (FOR EXAMPLE $\left.\sigma_{0}=I\right)$ THERE ARE TWO REMARKABLE FACTS

Representation Formula

$\forall y \in \partial \Omega, u_{\rho}(y)-u_{0}(y)=\rho^{n}|D| M \nabla u_{0}\left(x_{0}\right) \cdot \nabla_{x} N\left(x_{0}, y\right)+o\left(\rho^{n}\right)$
$N(x, y)$ is the Neumann function for $\nabla \cdot\left(\sigma_{0} \nabla\right)$:

$$
\begin{aligned}
& \nabla_{x} \cdot\left(\sigma_{0} \nabla_{x} N(x, y)\right)=\delta_{y} \text { in } \Omega \\
& \left(\sigma_{0} \nabla_{x} N\right) \cdot \nu_{x}=\frac{1}{|\partial \Omega|} \text { on } \partial \Omega .
\end{aligned}
$$

M is the "rescaled" polarization matrix
GIVEN A FIXED σ_{0} (FOR EXAMPLE $\left.\sigma_{0}=I\right)$ THERE ARE TWO REMARKABLE FACTS

1. M is bounded uniformly in σ.

Representation Formula

$\forall y \in \partial \Omega, u_{\rho}(y)-u_{0}(y)=\rho^{n}|D| M \nabla u_{0}\left(x_{0}\right) \cdot \nabla_{x} N\left(x_{0}, y\right)+o\left(\rho^{n}\right)$
$N(x, y)$ is the Neumann function for $\nabla \cdot\left(\sigma_{0} \nabla\right)$:

$$
\begin{aligned}
& \nabla_{x} \cdot\left(\sigma_{0} \nabla_{x} N(x, y)\right)=\delta_{y} \text { in } \Omega \\
& \left(\sigma_{0} \nabla_{x} N\right) \cdot \nu_{x}=\frac{1}{|\partial \Omega|} \text { on } \partial \Omega .
\end{aligned}
$$

M is the "rescaled" polarization matrix
Given a fixed σ_{0} (FOR EXAMPLE $\sigma_{0}=I$) THERE ARE TWO REMARKABLE FACTS

1. M is bounded uniformly in σ.
2. $\quad o\left(\rho^{n}\right) / \rho^{n} \rightarrow 0$ as $\rho \rightarrow 0$ uniformly in σ and ψ, provided

$$
\|\psi\|_{H^{-1 / 2}(\partial \Omega)} \leq 1
$$

For $\sigma_{0}=I, M$ is defined as follows

$$
M_{i, k}=\frac{1}{|D|} \int_{D}\left(\delta_{i, j}-\sigma_{i j}(\rho z)\right) \frac{\partial}{\partial z_{j}} \phi_{k} d z
$$

where

$$
\begin{gathered}
\nabla_{z} \cdot\left(\gamma(z) \nabla_{z} \phi_{k}\right)=0 \quad \text { in } \mathbb{R}^{n}, \\
\phi_{k}-z_{k} \rightarrow 0 \quad \text { as }|z| \rightarrow \infty, \quad \text { with } \\
\gamma(z)= \begin{cases}I & \text { for } z \text { in } \mathbb{R}^{n} \backslash D \\
\sigma(\rho z) & \text { for } z \text { in } D\end{cases}
\end{gathered}
$$

For $\sigma_{0}=I, M$ is defined as follows

$$
M_{i, k}=\frac{1}{|D|} \int_{D}\left(\delta_{i, j}-\sigma_{i j}(\rho z)\right) \frac{\partial}{\partial z_{j}} \phi_{k} d z
$$

where

$$
\begin{gathered}
\nabla_{z} \cdot\left(\gamma(z) \nabla_{z} \phi_{k}\right)=0 \quad \text { in } \mathbb{R}^{n}, \\
\phi_{k}-z_{k} \rightarrow 0 \quad \text { as }|z| \rightarrow \infty, \quad \text { with } \\
\gamma(z)= \begin{cases}I & \text { for } z \text { in } \mathbb{R}^{n} \backslash D \\
\sigma(\rho z) & \text { for } z \text { in } D\end{cases}
\end{gathered}
$$

We note that γ, ϕ_{k} and M generically depend on ρ.

Let $\Lambda_{\sigma_{\rho}}^{-1}$ denote the Neumann-to-Dirichlet data map (i.e., $\Lambda_{\sigma_{\rho}}$ is the Dirichlet-to-Neumann data map) then as a consequence

$$
\left\|\Lambda_{\sigma_{\rho}}^{-1}-\Lambda_{\sigma_{0}}^{-1}\right\|_{H^{-1 / 2} \rightarrow H^{1 / 2}} \leq C \rho^{n}
$$

with C completely independent of the conductivity, σ, inside the inhomogeneity ρD.
by the identity $\Lambda_{\sigma_{\rho}}-\Lambda_{\sigma_{0}}=-\Lambda_{\sigma_{\rho}}\left(\Lambda_{\sigma_{\rho}}^{-1}-\Lambda_{\sigma_{0}}^{-1}\right) \Lambda_{\sigma_{0}}$ we now also get

Let $\Lambda_{\sigma_{\rho}}^{-1}$ denote the Neumann-to-Dirichlet data map (i.e., $\Lambda_{\sigma_{\rho}}$ is the Dirichlet-to-Neumann data map) then as a consequence

$$
\left\|\Lambda_{\sigma_{\rho}}^{-1}-\Lambda_{\sigma_{0}}^{-1}\right\|_{H^{-1 / 2} \rightarrow H^{1 / 2}} \leq C \rho^{n}
$$

with C completely independent of the conductivity, σ, inside the inhomogeneity ρD.
by the identity $\Lambda_{\sigma_{\rho}}-\Lambda_{\sigma_{0}}=-\Lambda_{\sigma_{\rho}}\left(\Lambda_{\sigma_{\rho}}^{-1}-\Lambda_{\sigma_{0}}^{-1}\right) \Lambda_{\sigma_{0}}$ we now also get

$$
\left\|\Lambda_{\sigma_{\rho}}-\Lambda_{\sigma_{0}}\right\|_{H^{1 / 2} \rightarrow H^{-1 / 2}} \leq C \rho^{n}
$$

with C completely independent of the conductivity, σ, inside the inhomogeneity ρD.

Consider

$$
\left\{\begin{aligned}
\nabla \cdot\left(\sigma_{\rho} \nabla v_{\rho}\right)=F & \text { in } \Omega \\
\left(\sigma_{\rho} \nabla u_{\rho}\right) \cdot \nu=f & \text { on } \partial \Omega
\end{aligned}\right.
$$

Consider

$$
\left\{\begin{aligned}
\nabla \cdot\left(\sigma_{\rho} \nabla v_{\rho}\right)=F & \text { in } \Omega \\
\left(\sigma_{\rho} \nabla u_{\rho}\right) \cdot \nu=f & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Define the energy

$$
E_{\rho}(v)=\frac{1}{2} \int_{\Omega}<\sigma_{\rho} \nabla v, \nabla v>d x+\int_{\Omega} F v d x-\int_{\partial \Omega} f v d \sigma
$$

Consider

$$
\left\{\begin{aligned}
\nabla \cdot\left(\sigma_{\rho} \nabla v_{\rho}\right)=F & \text { in } \Omega \\
\left(\sigma_{\rho} \nabla u_{\rho}\right) \cdot \nu=f & \text { on } \partial \Omega
\end{aligned}\right.
$$

Define the energy

$$
E_{\rho}(v)=\frac{1}{2} \int_{\Omega}<\sigma_{\rho} \nabla v, \nabla v>d x+\int_{\Omega} F v d x-\int_{\partial \Omega} f v d \sigma
$$

Suppose supp $F \subset \subset \Omega \backslash \rho D$. Then

$$
\left|E_{\rho}\left(v_{\rho}\right)-E_{0}\left(v_{0}\right)\right| \leq C \rho^{n}\left(\|F\|_{L^{2}}^{2}+\|f\|_{H^{-1 / 2}}^{2}\right)
$$

with C independent of the conductivity σ (inside ρD).

Proof: \quad suppose $E_{\rho}\left(v_{\rho}\right) \geq E_{0}\left(v_{0}\right)$, then

$$
\begin{aligned}
\left|E_{\rho}\left(v_{\rho}\right)-E_{0}\left(v_{0}\right)\right| & =E_{\rho}\left(v_{\rho}\right)-E_{0}\left(v_{0}\right) \\
& \leq E_{\rho}\left(v^{*}\right)-E_{0}\left(v_{0}\right) \quad \text { for any } v^{*} \in H^{1}(\Omega)
\end{aligned}
$$

suppose $x_{0}=0$, and select

$$
v^{*}(x)=\chi_{\rho}(x) v_{0}(0)+\left(1-\chi_{\rho}(x)\right) v_{0}(x)
$$

with $\chi_{\rho} \equiv 1$ in $B_{\rho}, \chi_{\rho} \equiv 0$ outside $B_{2 \rho}$ (where $\rho D \subset B_{\rho}$).

Proof: \quad suppose $E_{\rho}\left(v_{\rho}\right) \geq E_{0}\left(v_{0}\right)$, then

$$
\begin{aligned}
\left|E_{\rho}\left(v_{\rho}\right)-E_{0}\left(v_{0}\right)\right| & =E_{\rho}\left(v_{\rho}\right)-E_{0}\left(v_{0}\right) \\
& \leq E_{\rho}\left(v^{*}\right)-E_{0}\left(v_{0}\right) \quad \text { for any } v^{*} \in H^{1}(\Omega)
\end{aligned}
$$

suppose $x_{0}=0$, and select

$$
v^{*}(x)=\chi_{\rho}(x) v_{0}(0)+\left(1-\chi_{\rho}(x)\right) v_{0}(x)
$$

with $\chi_{\rho} \equiv 1$ in $B_{\rho}, \chi_{\rho} \equiv 0$ outside $B_{2 \rho}\left(\right.$ where $\left.\rho D \subset B_{\rho}\right)$.
Then

$$
\begin{aligned}
& 2\left(E_{\rho}\left(v^{*}\right)-E_{0}\left(v_{0}\right)\right) \\
& \quad=\int_{\Omega}<\sigma_{\rho} \nabla v^{*}, \nabla v^{*}>-\int_{\Omega}<\sigma_{0} \nabla v_{0}, \nabla v_{0}> \\
& \quad=\int_{B_{2 \rho} \backslash B_{\rho}}<\sigma_{\rho} \nabla v^{*}, \nabla v^{*}>-\int_{B_{2 \rho}}<\sigma_{0} \nabla v_{0}, \nabla v_{0}>
\end{aligned}
$$

$$
\begin{aligned}
& 2\left(E_{\rho}\left(v^{*}\right)-E_{0}\left(v_{0}\right)\right) \\
& \quad \leq \int_{B_{2 \rho} \backslash B_{\rho}}<\sigma_{0} \nabla v^{*}, \nabla v^{*}>d x \leq C \rho^{n}\left\|\nabla v_{0}\right\|_{C^{0}\left(B_{2 \rho}\right)}^{2} \\
& \quad \leq C \rho^{n}\left(\|F\|_{L^{2}}^{2}+\|f\|_{H^{-1 / 2}}^{2}\right)
\end{aligned}
$$

with C independent of the conductivity σ (inside ρD). Similarly for the case $E_{\rho}\left(v_{\rho}\right)<E_{0}\left(v_{0}\right)$ we use the dual variational characterization

$$
\begin{aligned}
& 2\left(E_{\rho}\left(v^{*}\right)-E_{0}\left(v_{0}\right)\right) \\
& \quad \leq \int_{B_{2 \rho} \backslash B_{\rho}}<\sigma_{0} \nabla v^{*}, \nabla v^{*}>d x \leq C \rho^{n}\left\|\nabla v_{0}\right\|_{C^{0}\left(B_{2 \rho}\right)}^{2} \\
& \quad \leq C \rho^{n}\left(\|F\|_{L^{2}}^{2}+\|f\|_{H^{-1 / 2}}^{2}\right)
\end{aligned}
$$

with C independent of the conductivity σ (inside ρD). Similarly for the case $E_{\rho}\left(v_{\rho}\right)<E_{0}\left(v_{0}\right)$ we use the dual variational characterization

Define

$$
A_{\rho}:(F, f) \rightarrow\left(\left.\left(v_{\rho}-v_{0}\right)\right|_{\Omega \backslash B_{\delta}},-\left.\left(v_{\rho}-v_{0}\right)\right|_{\partial \Omega}\right)
$$

From before we know that

$$
\begin{aligned}
& 2\left(E_{\rho}\left(v^{*}\right)-E_{0}\left(v_{0}\right)\right) \\
& \quad \leq \int_{B_{2 \rho} \backslash B_{\rho}}<\sigma_{0} \nabla v^{*}, \nabla v^{*}>d x \leq C \rho^{n}\left\|\nabla v_{0}\right\|_{C^{0}\left(B_{2 \rho}\right)}^{2} \\
& \quad \leq C \rho^{n}\left(\|F\|_{L^{2}}^{2}+\|f\|_{H^{-1 / 2}}^{2}\right)
\end{aligned}
$$

with C independent of the conductivity σ (inside ρD). Similarly for the case $E_{\rho}\left(v_{\rho}\right)<E_{0}\left(v_{0}\right)$ we use the dual variational characterization

Define

$$
A_{\rho}:(F, f) \rightarrow\left(\left.\left(v_{\rho}-v_{0}\right)\right|_{\Omega \backslash B_{\delta}},-\left.\left(v_{\rho}-v_{0}\right)\right|_{\partial \Omega}\right)
$$

From before we know that

$$
\begin{gathered}
\left|<A_{\rho}(F, f),(F, f)>\left|=\left|\int_{\Omega} F\left(v_{\rho}-v_{0}\right)-\int_{\partial \Omega} f\left(v_{\rho}-v_{0}\right)\right|\right.\right. \\
=2\left|E_{\rho}\left(v_{\rho}\right)-E_{0}\left(v_{0}\right)\right| \leq C \rho^{n}\left(\|F\|_{L^{2}}^{2}+\|f\|_{H^{-1 / 2}}^{2}\right)
\end{gathered}
$$

and so by "polarization"

$$
\begin{aligned}
\left|<A_{\rho}(F, f),(G, g)>\right| \leq C \rho^{n}\left(\|F\|_{L^{2}}\right. & \left.+\|f\|_{H^{-1 / 2}}\right) \\
& \times\left(\|G\|_{L^{2}}+\|g\|_{H^{-1 / 2}}\right)
\end{aligned}
$$

and so by "polarization"

$$
\begin{aligned}
\left|<A_{\rho}(F, f),(G, g)>\right| \leq C \rho^{n}\left(\|F\|_{L^{2}}\right. & \left.+\|f\|_{H^{-1 / 2}}\right) \\
& \times\left(\|G\|_{L^{2}}+\|g\|_{H^{-1 / 2}}\right)
\end{aligned}
$$

Or

$$
\left\|v_{\rho}-v_{0}\right\|_{L^{2}\left(\Omega \backslash B_{\delta}\right)}+\left\|v_{\rho}-v_{0}\right\|_{H^{1 / 2}(\partial \Omega)} \leq C \rho^{n}\left(\|F\|_{L^{2}}+\|f\|_{H^{-1 / 2}}\right)
$$

and so by "polarization"

$$
\begin{aligned}
&\left|<A_{\rho}(F, f),(G, g)>\right| \leq C \rho^{n}\left(\|F\|_{L^{2}}\right.\left.+\|f\|_{H^{-1 / 2}}\right) \\
& \times\left(\|G\|_{L^{2}}+\|g\|_{H^{-1 / 2}}\right)
\end{aligned}
$$

or

$$
\left\|v_{\rho}-v_{0}\right\|_{L^{2}\left(\Omega \backslash B_{\delta}\right)}+\left\|v_{\rho}-v_{0}\right\|_{H^{1 / 2}(\partial \Omega)} \leq C \rho^{n}\left(\|F\|_{L^{2}}+\|f\|_{H^{-1 / 2}}\right)
$$

in particular

$$
\left\|u_{\rho}-u_{0}\right\|_{H^{1 / 2}(\partial \Omega)} \leq C \rho^{n}\|\psi\|_{H^{-1 / 2}(\partial \Omega)}
$$

or

$$
\left\|\Lambda_{\sigma_{\rho}}^{-1}-\Lambda_{\sigma_{0}}^{-1}\right\|_{H^{-1 / 2} \rightarrow H^{1 / 2}} \leq C \rho^{n}
$$

with C completely independent of the conductivity, σ, inside the inhomogeneity ρD.

We have a more general Representation Formula (with Y.
Capdeboscq)
$\forall y \in \partial \Omega, u_{\rho}(y)-u_{0}(y)=\left|D_{\rho}\right| \int_{\Omega}$

$$
+o\left(\left|D_{\rho}\right|\right)
$$

which holds for arbitrary $D_{\rho} \subset \subset \Omega$, with $\left|D_{\rho}\right| \rightarrow 0$ (after extraction of a subsequence).

We have a more general Representation Formula (with Y.
Capdeboscq)
$\forall y \in \partial \Omega, u_{\rho}(y)-u_{0}(y)=\left|D_{\rho}\right| \int_{\Omega} \quad \cdot \nabla_{x} N(x, y) \quad+o\left(\left|D_{\rho}\right|\right)$
which holds for arbitrary $D_{\rho} \subset \subset \Omega$, with $\left|D_{\rho}\right| \rightarrow 0$ (after extraction of a subsequence).

We have a more general Representation Formula (with Y.
Capdeboscq)
$\forall y \in \partial \Omega, u_{\rho}(y)-u_{0}(y)=\left|D_{\rho}\right| \int_{\Omega} \quad \cdot \nabla_{x} N(x, y) d \mu(x)+o\left(\left|D_{\rho}\right|\right)$
which holds for arbitrary $D_{\rho} \subset \subset \Omega$, with $\left|D_{\rho}\right| \rightarrow 0$ (after extraction of a subsequence).
Here μ is a probability measure $\left(\mu=\lim _{\rho \rightarrow 0} \frac{1}{\left|D_{\rho}\right|} 1_{D_{\rho}}\right.$ weak* in $\left.C^{0}(\bar{\Omega})^{*}\right)$

We have a more general Representation Formula (with Y.
Capdeboscq)
$\forall y \in \partial \Omega, u_{\rho}(y)-u_{0}(y)=\left|D_{\rho}\right| \int_{\Omega} M(y) \nabla u_{0} \cdot \nabla_{x} N(x, y) d \mu(x)+o\left(\left|D_{\rho}\right|\right)$
which holds for arbitrary $D_{\rho} \subset \subset \Omega$, with $\left|D_{\rho}\right| \rightarrow 0$ (after extraction of a subsequence).
Here μ is a probability measure $\left(\mu=\lim _{\rho \rightarrow 0} \frac{1}{\left|D_{\rho}\right|} 1_{D_{\rho}}\right.$ weak * in $\left.C^{0}(\bar{\Omega})^{*}\right)$ and M is a matrix valued function in $L^{2}(\Omega, d \mu)$.
but in this case we do not in general (for $D_{\rho} \neq x_{0}+\rho D$) get that $\left\|\Lambda_{\sigma_{\rho}}^{-1}-\Lambda_{\sigma_{0}}^{-1}\right\|_{H^{-1 / 2} \rightarrow H^{1 / 2}}$ approaches 0 uniformly with respect to σ, as $\left|D_{\rho}\right|$ approaches 0.

We have a more general Representation Formula (with Y.
Capdeboscq)
$\forall y \in \partial \Omega, u_{\rho}(y)-u_{0}(y)=\left|D_{\rho}\right| \int_{\Omega} M(y) \nabla u_{0} \cdot \nabla_{x} N(x, y) d \mu(x)+o\left(\left|D_{\rho}\right|\right)$
which holds for arbitrary $D_{\rho} \subset \subset \Omega$, with $\left|D_{\rho}\right| \rightarrow 0$ (after extraction of a subsequence).
Here μ is a probability measure $\left(\mu=\lim _{\rho \rightarrow 0} \frac{1}{\left|D_{\rho}\right|} 1_{D_{\rho}}\right.$ weak* in $\left.C^{0}(\bar{\Omega})^{*}\right)$ and M is a matrix valued function in $L^{2}(\Omega, d \mu)$.
but in this case we do not in general (for $D_{\rho} \neq x_{0}+\rho D$) get that $\left\|\Lambda_{\sigma_{\rho}}^{-1}-\Lambda_{\sigma_{0}}^{-1}\right\|_{H^{-1 / 2} \rightarrow H^{1 / 2}}$ approaches 0 uniformly with respect to σ, as $\left|D_{\rho}\right|$ approaches 0.
as a example take the thin filament: $D_{\rho}=(-1,1) \times(-\rho, \rho)!$!

For the Helmholtz problem

$$
\left\{\begin{array}{ll}
\operatorname{div}\left(A_{\rho} \nabla u_{\rho}\right)+\omega^{2} q_{\rho} u_{\rho}=0 & \text { in } \Omega \\
\frac{\partial u_{\rho}}{\partial \nu}=\psi & \text { on } \partial \Omega
\end{array},\right.
$$

there are eigenvalue issues.

For the Helmholtz problem

$$
\left\{\begin{array}{ll}
\operatorname{div}\left(A_{\rho} \nabla u_{\rho}\right)+\omega^{2} q_{\rho} u_{\rho}=0 & \text { in } \Omega \\
\frac{\partial u_{\rho}}{\partial \nu}=\psi & \text { on } \partial \Omega
\end{array},\right.
$$

there are eigenvalue issues.
On the one side: if $-\omega^{2}$ is not an eigenvalue corresponding to A_{0}, q_{0}, then for any fixed parameters A and q (inside ρD) there exists ρ_{0} such that $-\omega^{2}$ is not an eigenvalues corresponding to A_{ρ}, q_{ρ}, for $\rho<\rho_{0}$, and

For the Helmholtz problem

$$
\left\{\begin{array}{ll}
\operatorname{div}\left(A_{\rho} \nabla u_{\rho}\right)+\omega^{2} q_{\rho} u_{\rho}=0 & \text { in } \Omega \\
\frac{\partial u_{\rho}}{\partial \nu}=\psi & \text { on } \partial \Omega
\end{array},\right.
$$

there are eigenvalue issues.
On the one side: if $-\omega^{2}$ is not an eigenvalue corresponding to A_{0}, q_{0}, then for any fixed parameters A and q (inside ρD) there exists ρ_{0} such that $-\omega^{2}$ is not an eigenvalues corresponding to A_{ρ}, q_{ρ}, for $\rho<\rho_{0}$, and

$$
\left\|u_{\rho}-u_{0}\right\|_{H^{1 / 2}(\partial \Omega)} \leq C_{\omega} \rho^{n}\|\psi\|_{H^{-1 / 2}(\partial \Omega)}
$$

For the Helmholtz problem

$$
\begin{cases}\operatorname{div}\left(A_{\rho} \nabla u_{\rho}\right)+\omega^{2} q_{\rho} u_{\rho}=0 & \text { in } \Omega \\ \frac{\partial u_{\rho}}{\partial \nu}=\psi & \text { on } \partial \Omega\end{cases}
$$

there are eigenvalue issues.
On the one side: if $-\omega^{2}$ is not an eigenvalue corresponding to A_{0}, q_{0}, then for any fixed parameters A and q (inside ρD) there exists ρ_{0} such that $-\omega^{2}$ is not an eigenvalues corresponding to A_{ρ}, q_{ρ}, for $\rho<\rho_{0}$, and

$$
\left\|u_{\rho}-u_{0}\right\|_{H^{1 / 2}(\partial \Omega)} \leq C_{\omega} \rho^{n}\|\psi\|_{H^{-1 / 2}(\partial \Omega)}
$$

In the two-dimensional scattering context a formal analysis indicates that $C_{\omega} \leq C \omega^{2}$ for $\rho \omega \ll 1$, and we suspect

For the Helmholtz problem

$$
\begin{cases}\operatorname{div}\left(A_{\rho} \nabla u_{\rho}\right)+\omega^{2} q_{\rho} u_{\rho}=0 & \text { in } \Omega \\ \frac{\partial u_{\rho}}{\partial \nu}=\psi & \text { on } \partial \Omega\end{cases}
$$

there are eigenvalue issues.
On the one side: if $-\omega^{2}$ is not an eigenvalue corresponding to A_{0}, q_{0}, then for any fixed parameters A and q (inside ρD) there exists ρ_{0} such that $-\omega^{2}$ is not an eigenvalues corresponding to A_{ρ}, q_{ρ}, for $\rho<\rho_{0}$, and

$$
\left\|u_{\rho}-u_{0}\right\|_{H^{1 / 2}(\partial \Omega)} \leq C_{\omega} \rho^{n}\|\psi\|_{H^{-1 / 2}(\partial \Omega)}
$$

In the two-dimensional scattering context a formal analysis indicates that $C_{\omega} \leq C \omega^{2}$ for $\rho \omega \ll 1$, and we suspect

$$
\left\|u_{s, \rho}\right\|_{L^{2}(\partial \Omega)} \leq C \sqrt{\rho}
$$

for a "unit-sized" incident wave, with C independent of ω.

On the other hand: even if $-\omega^{2}$ is not an eigenvalue corresponding to A_{0}, q_{0}, it may be an eigenvalue for some A_{ρ}, q_{ρ} (with A_{ρ}, q_{ρ} very large inside ρD) for ρ arbitrarily small. To remedy this situation, and obtain estimates we introduce an absorbing (lossy) layer. For example

$$
\begin{cases}A_{\rho}=q_{\rho}=1 & \text { in } \Omega \backslash B_{2 \rho} \\ A_{\rho}=1, q_{\rho}=1+i \beta & \text { in } B_{2 \rho} \backslash B_{\rho} \\ A_{\rho}, q_{\rho} \text { arbitrary, real } & \text { in } B_{\rho}\end{cases}
$$

with $\beta=d_{0} \rho^{-2}$ and then obtain

On the other hand: even if $-\omega^{2}$ is not an eigenvalue corresponding to A_{0}, q_{0}, it may be an eigenvalue for some A_{ρ}, q_{ρ} (with A_{ρ}, q_{ρ} very large inside ρD) for ρ arbitrarily small. To remedy this situation, and obtain estimates we introduce an absorbing (lossy) layer. For example

$$
\begin{cases}A_{\rho}=q_{\rho}=1 & \text { in } \Omega \backslash B_{2 \rho} \\ A_{\rho}=1, q_{\rho}=1+i \beta & \text { in } B_{2 \rho} \backslash B_{\rho} \\ A_{\rho}, q_{\rho} \text { arbitrary, real } & \text { in } B_{\rho}\end{cases}
$$

with $\beta=d_{0} \rho^{-2}$ and then obtain

$$
\left\|u_{\rho}-u_{0}\right\|_{H^{\frac{1}{2}}(\partial \Omega)} \leq C\|\psi\|_{H^{-\frac{1}{2}}(\partial \Omega)}\left\{\begin{array}{ll}
\frac{1}{|\log \rho|}, & n=2 \\
\rho^{1 / 2}, & n=3
\end{array},\right.
$$

for $0<\rho<\rho_{0}$.

On the other hand: even if $-\omega^{2}$ is not an eigenvalue corresponding to A_{0}, q_{0}, it may be an eigenvalue for some A_{ρ}, q_{ρ} (with A_{ρ}, q_{ρ} very large inside ρD) for ρ arbitrarily small. To remedy this situation, and obtain estimates we introduce an absorbing (lossy) layer. For example

$$
\begin{cases}A_{\rho}=q_{\rho}=1 & \text { in } \Omega \backslash B_{2 \rho} \\ A_{\rho}=1, q_{\rho}=1+i \beta & \text { in } B_{2 \rho} \backslash B_{\rho} \\ A_{\rho}, q_{\rho} \text { arbitrary, real } & \text { in } B_{\rho}\end{cases}
$$

with $\beta=d_{0} \rho^{-2}$ and then obtain

$$
\left\|u_{\rho}-u_{0}\right\|_{H^{\frac{1}{2}}(\partial \Omega)} \leq C\|\psi\|_{H^{-\frac{1}{2}}(\partial \Omega)}\left\{\begin{array}{ll}
\frac{1}{|\log \rho|}, & n=2 \\
\rho^{1 / 2}, & n=3
\end{array},\right.
$$

for $0<\rho<\rho_{0}$.

The constants C and ρ_{0} depend on ω and d_{0}, but are completely independent of A_{ρ} and q_{ρ} inside B_{ρ}.

The constants C and ρ_{0} depend on ω and d_{0}, but are completely independent of A_{ρ} and q_{ρ} inside B_{ρ}.

We do not believe the expression $\rho^{1 / 2}$ for $n=3$ is optimal (it should probably be ρ)

The constants C and ρ_{0} depend on ω and d_{0}, but are completely independent of A_{ρ} and q_{ρ} inside B_{ρ}.

We do not believe the expression $\rho^{1 / 2}$ for $n=3$ is optimal (it should probably be ρ)

We are currently studying.the issue of uniformity with respect to ω.

The constants C and ρ_{0} depend on ω and d_{0}, but are completely independent of A_{ρ} and q_{ρ} inside B_{ρ}.

We do not believe the expression $\rho^{1 / 2}$ for $n=3$ is optimal (it should probably be ρ)

We are currently studying.the issue of uniformity with respect to ω.
This study we are initially conducting in the context of the scattering problem $\left(\Omega=\mathbb{R}^{n}\right)$ to avoid some of the eigenvalue issues.

