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 Multilevel Modeling:  Micro to Macro
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Stokesian Dynamics (N=27-64)
Phillips, et al  (1989)
Ladd (1990)
Phung (1994)

Accelerated Stokesian Dynamics
 N=125  N=343
 N=512  N=1000
 N=2000

Experimental Results
van der Werff, et. al. (1989)
Shikata & Pearson (1994)

Asymptotic Form
 6.5ln(1/$) + 0.17/$
$ = (1 % #/#rcp)

#rcp= 0.64

-->                           Meso -->                   Macro
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Suspensions as ‘Complex Fluids’

• Many complex fluids are composed of (or can
be modeled as) small particles dispersed in a
viscous fluid where Brownian forces (kT )
compete against interparticle (V ) and
hydrodynamic (Re << 1) forces to set structure
and determine properties

• What makes complex fluids interesting is that
they are ‘soft’

• And often far from equilibrium
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Photo by Y. Monovoukas

Russel, Saville & Schowalter (1989)

Length and Time Scales of Complex Fluids

Size Scale

Time ScaleMethod  

Polymers

Colloids

Suspensions

Granular Media
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Dynamics
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Characteristic Scales:  A Simple Example

Spherical particle of 0.5µm of specific gravity 2 falling in water.

a

g
! 

Particle Size :    a = 1

2
µm

! 

Fall Speed :   U = 1
2
µm/s

! 

Reynolds Number :   Re = 1
2
"10#6

! 

Diffusivity :   D = 1
2

µm( )
2
/s

! 

Peclet Number :   Pe = 1

2

! 

Pe =
Ua

D
! 

Re =
"Ua

#

! 

Stokes - Einstein - Sutherland Relation :   D = kTR
"1

=
kT

6#$a

! 

inertial

viscous
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advection

diffusion
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Micromechanics (Re << 1)

m !
dU

dt
= F

H
+ F

B
+ F

PParticle Motion:

Hydrodynamic:
Stokes drag

! 

F
H = "R x( ) # U "U$( )

Fluid Motion:  
Stokes Equations no slip at

particle surfaces

! 

0 = "#p +$#2
u

! 

" #u = 0

! 

u =U + x "#

Interparicle/
external: F

P
= !"Vpg ,  electrostatic, etc.

! p ~ O(m / 6"#a)

    $10%8sBrownian:

O(10
!13
s)

! 

F
B = 0  ,   F

B
0( )FB

t( ) = 2kTR x( )" t( )
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Nature of Hydrodynamic Forces:  FH = - R(x)•U
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Model “Hard-Sphere” SuspensionsModel “Hard-Sphere” Suspensions

Three regimes:
Pe  << 1,  Brownian dominated
Pe   ~  1,  Balance
Pe  >> 1,  Hydrodynamic dominated

V

kT

!

Fluid State

“Condensed” State

Pe =
6!"a3 ˙ # 

kT

=   
Brownian Time

Flow Time
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Rheology:  Simulation vs. Experiment
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Brownian & hydrodynamic contributions to stress
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Shear Thickening: Boundary Layer at Particle
Contact:

_!

g(x; y)

r ! 2 ~ Pe
!1

˙ ! 

g(x, y)

Pe = 10
4

Sb.l .
H

~ !n
2
rF

b.l.

"
shear

g r( )dr  , F
shear

~ !3" # $ % &( )a2 ˙ '  (  ˆ r ˆ r ) ˆ E ) ˆ r ( )

Sb.l .
H

~ ! " # $( ) ˙ % $
2
g 2;$( ) Pe = 6! " # $ %( )a3 ˙ & kT

  

!r " ! # $( ) %1
$
2
g
#
2;$( )

= F Pe( )

Pe = 1 Pe = 5
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Simulation Results
Phung (1993)
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Experimental Results
van der Werff et al. (1989)

"=0.316
"=0.419
"=0.470
"=0.488

Krieger (1972)
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Experimental Results
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"=0.389
"=0.460
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Collapse of Shear Viscosity for all Pe
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Adsorbed PVA shifts the Shear
Thickening to higher Stresses

Flow Curves for bare and coated silica
             (pH 9.1, T = 25 C, satd. polymer layer)
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Sudden  Shear Thickening Maranzano & Wagner, JOR
2001, JCP 2002

Jammed
“Hydrocluster”

What’s It Good For?

http://www.youtube.com/watch?v=f2XQ97XHjVw

Walking on water!
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Microscale       Mesoscale       Macroscopic

• Rheology:  Stress--strain-
rate constitutive relations

• Diffusion:  Particle
distribution within each
(rheology) and between
volume elements

Macroscale Flow Geometry

Microscale Distribution

Mesoscale Volume

! 

" ˙ # ,  $,  microstructure, etc.( )

! 

u p "u = f ˙ # ,  $,  microstructure, etc( )

Particle Diffusion: D   ~    ( ! v )
2
    x    "

•  Brownian motion

• Time to diffuse the order of the particle size

( ! v )
2

~
3kT

m
 ,   " ~

m

6#$a
 ,     D ~

kT

2#$a

! 

t
a

~
a

2

D
~

2"#a3

kT
  $   1s  for a =  0.5µm
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Brownian Self-Diffusivity (long-time)

Brady (1994)

The self-diffusivity
decreases with
increasing
concentration as
the diffusing
particle must push
past its neighbors
to move.

D !( )
D
0

Particle Diffusion: D   ~    ( ! v )
2
    x    "

• Brownian motion

( ! v )
2

~
3kT

m
 ,   " ~

m

6#$a
 ,     D ~

kT

2#$a

! 

t
a

~
a

2

D
~

2"#a3

kT
  $   1s  for a =  0.5µm

! 

"   1000s  for a =  5µm

"   10
9
s ~ 30yrs  for a =  500µm

( ! v )
2

~ ( ˙ " a)
2
 ,   # ~ ˙ " 

$1
 ,     D ~ ˙ " a

2

˙ ! 

! 

Pe = ˙ " t
a

=
˙ " a2

D
B

>>1•  Shear-induced:
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GI Taylor film:  “Low Reynolds Number Flows”

Does shear-induced diffusion exist?  You Judge!

Run A

Run B

View is in the
velocity-gradient --
     vorticity plane

Simple Shear Flow
φ = 0.35, Re << 1
Pe = 0, ∞
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Which one is which?

Run C

Run D

Same as previous runs, 
but at a finer time scale

Oscillatory Shear:  Chaos & Reversibility

Small Strain Amplitude Large Strain Amplitude

[Pine, Gollub, Brady & Leshansky Nature (2005)]
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Oscillatory Shear:  Lyapunov Exponent

x
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" =
d

dt
ln d t( ) d 0( )[ ]

Oscillatory Shear:  Diffusivities
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Shear-Induced Diffusivity
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Foss & Brady (1999)
Sierou & Brady (2001)

Eckstein et al. (1977)

 Leighton & Acrivos (1987)

˙ ! a
2

Shear-Induced Self-Diffusivity

The shear-induced
self-diffusivity
increases with
increasing
concentration as
particle collisions
are responsible for
the diffusive
motion.
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Shear-Induced Particle Diffusion

• We see that particles undergo a random walk and
diffuse, even though there are no thermal effects.

• But what does this have to do with the phase behavior
in two-phase flow?

• Diffusion usually smoothes out concentration variations
and makes the system more homogeneous.

If the shear rate varies in a flow, then particles will
migrate to regions of low shear rate (Leighton &
Acrivos 1987).

• 

D  ~   ˙ !  a
2

d "( )
But …• 

Pressure-driven flow of suspensions (H/a = 30, φA = 0.4)
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Particle Migration

• Because the diffusivity is
proportional to the shear
rate, when the shear rate
varies as in pressure-driven
flow, the particles migrate
from regions of high shear
rate to low, much as
molecules migrate from high
temperature to low -- the
Soret effect.

• This behavior can be
modeled by writing mass and
momentum balances for the
particles and fluid -- two-
phase flow equations.

Lyon & Leal (1998)

Another Issue: Flows with curved streamlines

Parallel Plate:      Cone & Plate:

H

!

r

z

!

r

!
!

_!= "
r

H
_! is constant

suspension

˙ ! ˙ ! = "
r

H

NMR images of fluid fraction (Chow, et al., Phys. Fluids 1994)

before after before after

a = 50µm
φ = 0.5

! 

N
1

= " 5

4
N
2
" 3

4
#

! 

N
1

= "2N
2⇐  stress balance: no migration ⇒
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Normal Stress Effects
Rod climbing (N1 > 0)

(From DPL1, Bird, Armstrong & Hassager)

Rod falling (N2 + N1/2 < 0)

Aral & Kalyon, J. Rheol. (1997)

Zarraga, et al., J. Rheol. (2000)

|N2 + N1/2|

The Minimal Model

•  Stress is function of concentration and shear rate.
•  Normal stresses are important
•  Motion of concentration relative to the mean

Suspension Balance Model (Nott & Brady, JFM 1994)

! 

"
Du

Dt
=# $%  ,    # $u = 0

! 

"p#
Du p

Dt
= $#R #( ) u p $u( ) +% &' p   ,    

(#

(t
+% & #u p = 0

Bulk suspension:

Particle phase:
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The Minimal Model
•  Stress is function of concentration and shear rate.
•  Normal stresses are important
•  Motion of concentration relative to the mean

! 

"p#
Du p

Dt
= $#R #( ) u p $u( ) +% &' p   ,    

(#

(t
+% & #u p = 0

Particle phase:

No particle inertia:

! 

" u p #u( ) =
1

R "( )
$ %& p  '

! 

"#

"t
+$ % #u = &$

1

R #( )
$ %' p

Stress-induced diffusion

The Minimal Model

•  Stress is function of concentration and shear rate.
•  Normal stresses are important
•  Motion of concentration relative to the mean

Bulk suspension:

Particle phase:

! 

" = #pI + 2$e +" p  ,

! 

" p = #$ %, ˙ & ( )I + 2'p %, ˙ & ( )e + Np %, ˙ & ( )

Osmotic 
pressure

Shear
viscosity

Normal stress
differences

! 

"#

"t
+$ % #u = &$

1

R #( )
$ %' p  (

! 

"
Du

Dt
=# $%  ,    # $u = 0

! 

D ", ˙ # ( ) =
1

R "( )

$% ", ˙ # ( )
$"
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Modeling Suspension Flows (Fang et al 2002)
Eccentric journal bearing,  e/c = 1/2,     φ = 0.5,    (H/a) = 35.3

Diffusive
Flux Model

Suspension
Balance
Model

Experiment

# turns

Particle Migration

• Because the diffusivity is
proportional to the shear
rate, when the shear rate
varies as in pressure-driven
flow, the particles migrate
from regions of high shear
rate to low, much as
molecules migrate from high
temperature to low -- the
Soret effect.

• This behavior can be
modeled by writing mass and
momentum balances for the
particles and fluid -- two-
phase flow equations.

Lyon & Leal (1998)
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The (next) Minimal Model

•  Stress is function of concentration and shear rate.
•  Normal stresses are important
•  Motion of concentration relative to the mean

•  Nonlocal behavior:

! 

" p x,t( ) = #p x $ % x ( )e % x ( )& d % x 

Suspension Temperature:

! 

T =
1

2
" u p # " u p( )

Energy balance:

! 

"Cp

DT

Dt
=# : e $% &( )T $' ( q  ,   q = $k &( )'T

! 

" #, ˙ $ ( ) = p #( )T

Particle Migration

• Because the diffusivity is
proportional to the shear
rate, when the shear rate
varies as in pressure-driven
flow, the particles migrate
from regions of high shear
rate to low, much as
molecules migrate from high
temperature to low -- the
Soret effect.

• This behavior can be
modeled by writing mass and
momentum balances for the
particles and fluid -- two-
phase flow equations.

Lyon & Leal (1998)
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The (next next) Minimal Model

•  Stress is function of concentration and shear rate.
•  Normal stresses are important
•  Motion of concentration relative to the mean
•  Nonlocal behavior

•  Microstructural evolution

Brownian & hydrodynamic contributions to stress
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The (next next) Minimal Model

•  Stress is function of concentration and shear rate.
•  Normal stresses are important
•  Motion of concentration relative to the mean
•  Nonlocal behavior

•  Microstructural evolution:

! 

" p

H
~ #n2

rF$
shear

g r( )dr  ,

! 

F
shear

~ "3# $ % & '( )a2
˙ (  )  ˆ r ˆ r * ˆ e * ˆ r ( )

! 

" p

B
~ #n2

rF

.

$
B

g r( )dr    ,

! 

F
B

~ "D #, ˙ $ ( ) % & lng r( )

  

! 

"g r,t( )
"t

+# $ vrelg =# $D $ #g  +   L
x

y

! 

r

Tirumkudulu et al (1999)
Shinbrot & Muzzio (2000)

Zoueshtiagh & Thomas (2000)

Pattern Formation

Fluidized bed (Jackson 2000)
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Multilevel Approach
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Stokesian Dynamics (N=27-64)
Phillips, et al  (1989)
Ladd (1990)
Phung (1994)

Accelerated Stokesian Dynamics
 N=125  N=343
 N=512  N=1000
 N=2000

Experimental Results
van der Werff, et. al. (1989)
Shikata & Pearson (1994)

Asymptotic Form
 6.5ln(1/$) + 0.17/$
$ = (1 % #/#rcp)

#rcp= 0.64

Bulk
(Macroscopic)
Flows

Average
(Mesoscopic)
Behavior

Particle-level
(Microscopic)
Interactions

The End


