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Polymer Nanocomposites
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Polymer Nanocomposites
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» Processing nanocomposites requires understanding their
flow behavior.

* Flow fields provide a versatile approach for controlling
dispersions of nanocomposites.




Challenges

* Objective: To model the flow dynamics and structure of
nanoparticle-polymer mixtures.

Interplay of hydrodynamics and fr'ic’rion in a viscoelastic medium
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The Approach

Explicit Solvent Method Continuum Methods

(Molecular dynamics) (Stokesian dynamics, Lattice-Boltzmann)
* Captures hydrodynamics and

* Captures hydrodynamics is computationally tractable.
and other interactions. » Can't include interactions with
* Due to size asymmetry, is the solvent.
computationally expensive. * Not developed for Non-Newtonian

flows.



The Approach

— Coarse-6rained
Explicit Solvent Method Explicit Solvent Method

Collection of microJcopic solvent units

* Particle and solvent units interact by
U..(r) coarse grained potentials.
e (1)U (r) are derivable from more

U, (r) a‘romus’rlc r'epr'esen‘ra’nons
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The Approach

— Coarse-6rained
Explicit Solvent Method Explicit Solvent Method
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* Particles interact by momentum conserving
thermostat (preserves hydrodynamics).
* Involves (central) dissipative forces
dependent upon the normal component

of the velocity differences.
- Similar to Dissipative Particle Dynamics.




The Approach

— Coarse-6rained
Explicit Solvent Method Explicit Solvent Method
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* Does not capture local
hydrodynamics.
* Requires tangential (not

central) velocity-dependent
forces.




The Approach

— Coarse-6rained
Explicit Solvent Method Explicit Solvent Method
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Composite Particles - Does hot capture local
Foly v hydrodynamics.
F) . .
* Requires tangential (not
F> central) velocity-dependent
\ forces.
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The Approach

— Coarse-6rained
Explicit Solvent Method Explicit Solvent Method
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Our proposal

* Directly incorporate tangential
velocity-dependent forces.




Hydrodynamic Friction Forces
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» Conserves linear and aqgular momentum U, Conservative
* Preserves hydrodynamical phenomena

* Includes tangential friction

* Brownian dynamics + Dissipative forces Fr Random forces
- Computationally tractable (for size asymmetric systems)

(Espanol, 1998; Pryamitsyn and Ganesan, JCP, 2005)

Fo Dissipative



Coarse-Grained Colloidal Suspension

- Mixture of colloid and solvent
- Colloid:Solvent Radius = 5:1.
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(Pryamitsyn and Ganesan, JCP, 2005)



Hydrodynamic Interactions: Zero-Shear Viscosity
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- Coarse-Grained solvent method captures hydrodynamical
iInteractions



Shear Rheology

Rheology is sensitive to lubrication forces

Provides a sensitive test of explicit solvent
model.

Stokesian Dynamics
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Summary So Far..

» Outlined a coarse-grained explicit solvent method to
simulate hydrodynamical phenomena involving particles in
complex fluids.

* Provided evidence that both hydrodynamical and other
interactions can be faithfully captured.

* Results on hard sphere suspensions provided new insights
into the interplay between glass transition, hydrodynamics
and rheology.



Why Polymer Nanocomposites ?
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Polymer's Nano-fillers (C|Cly, k [ N 100 nm
(Solutions, Blends) Nanotubes, Fullerenes) Nanocomposites
(@) y Remforcement even atmn ~ 2%
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i Elastic modulus doubles
S L8 sjﬁ?}" Viscosity increases by an order
3 L. :f&‘? 1% of magnitude
o \*JF . _ . . |
i 05 % Microsized particles vol ~ 30%

3 A4 o N

"1 < 0% Nanoparticles vol ~1-5 %

R s
Silica + PEO* # Zhang and Archer, Langmuir, 2002

v'Addition of small particles - Significant property enhancement!!



Issues and Questions

* How do nanoparticles modify the mechanical properties of
polymer matrices ?

* What are the mechanisms underlying the above effects ?

* What are the parameters governing the mechanisms ?



Rheology of PNCs: Linear Viscoelasticity
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- Significant enhancements in elasticity at extremely low loadings

» Change of viscoelastic response to "solid-like” behavior.

*.Krishnamoorti and Giannelis; **: Fornes and Paul



Rheology: Explanations

Particle Jamming/Percolation (Krishnamoorti)
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« Jamming/percolation

/ occurs at low ¢

R ~1

? é * Leads to solid behavior
and the enhancements
<

in modulus.




Rheology: Explanations

Polymer Network Mechanism (Kumar and Douglas)

Immoblllzed
Monomers

* Elasticity due to transient network formation.

» Plateau modulus due to bridges.



Rheology of PNCs: Model System

* Mixture of spherical nanoparticles in polymer matrices

* Advantage: A lot is known about spherical colloidal dispersions
- Disadvantanges: Orientational effects are absent.
Need much higher loadings.



Model of Polymer Nanocomposites

* Mixture of colloid and polymeric melt N,
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(VP & VG: Macromolecules, 2006; J. of Rheology)
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Rheology of PNCs: Linear Viscoelasticity
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- Lower Loadings: Enhancement in modulus but no apparent
change in relaxation behavior.

* Higher Loadings: Significant enhancement in modulus and a
solid-like behavior.



Rheology of PNCs: Line
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- Significant enhancements in elasticity at extremely low loadings

» Change of viscoelastic response to "solid-like" behavior.

*.Krishnamoorti and Giannelis; **: Fornes and Paul



Rheology of PNCs: Linear Viscoelasticity
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* Enhancement in modulus but no apparent change in relaxatior

behavior at lower loadings: Why ?
» Significant enhancement in modulus and a solid-like behavior

at higher loadings: Why ? (Not in this talk)



Impact on Polymer Dynamics

» Significant impact upon glass transition temperature and
polymer dynamics on adding nanoparticles.#

How does the polymer dynamics change due to addition of
nanoparticles ?
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Simulation Features
For unentangled polymers, No glass ftransition
<Xm ()X, (O)> ~exp(-t/z,) |Coarse-grained model
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T ocm ;N ° oc ¢ Related to viscosity of media
#: Giannelis, Adv. Pol. Sci, 138, 107



Effect of Particles on Polymer Dynamics

(X,(0)X,(0)) ~exp(-t/z,)

1071,
A %o
93 AA..
..A 0N :8
P
‘_Ag“ 9=00 .y _
. MHMAIA‘AI " g S mEmNlgy AN ] = 48
p =

$=033 Ne =9
MW‘MAIA'AIII.II-I..II'

A
OHI\JOO-hU‘ICD\IOO
| le. |

i $=0.11
w P v R R e uoan
Bare

Matrix '1(p—1)/(NP—1)

0 0.25 0.5 0.75

Overall Slowing of Polymer Relaxations



Effect of Particles on Polymer Dynamics

(X,(0)X,(0)) ~exp(-t/z,)

'%‘ MM:%»\*'M. 0

e, o
Slowed §‘ .)_é

Monomers ®yo

» Simulations of Grant Smith: Attractions lead to only a weak

slowing down in melts.

+ Different monomers of a chain access the slower regions:
Overall slowing down of the polymers




Effect of Particles on Polymer' Viscoelasticity
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Effect of Particles on Polymer Viscoelasticity
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Effect of Particles on Polymer Viscoelasticity
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Physical Picture of Polymer Rheology at Low Loadings

» Particle-induced changes in polymer dynamics is responsible.

* For the weakly attractive particles, the above manifests as
just a change in relaxation times.

* For strongly attractive particles, the above manifests as the
modulus due to polymer-bridged networks.




Comparisons to Experiments

* (Kropka, Green and Ganesan, Macromolecules, In Press)
Comparison of the relaxation times in nanocomposites to
the bare r?!jaxa’rion times.
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Comparisons to Experiments

* (Kropka, Green and Ganesan, Macromolecules, in Press)
Superposition of mechanical modulii after renormalization
of relaxation times.
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Rheology of PNCs: Issues and Questions

* How do nanoparticles modify the rheology of polymer
matrices ? b

* What are the mechanisms underlying the above effec’rs_@

* At low particle loadings, polymer-bridging of particles
is the responsible mechanism.

* What are the parameters governing the mechanisms ?

* What are the elastic and structural properties of the gels ?
 Why do nanoparticles lead to prevelant gelation ?

* How does the concentration of particles and polymer affect
the gelation, stability characteristics of the mixture ?



Outline of Approach

Integrate out polymer degrees of

freedom
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Integrating Out the Polymer By Mean-Field Theory
d%i = Self avoiding random walk

N segment chain
J wf = Charge effects

Bead-spring model of polymer

Idea behind mean-field theory™

W (r)

Thermodynamics %N
 —

» Single chain in a potential field
W(r).

* W(r) determined self-consistently
to match statistical properties of
polymers, say, the volume fraction.

*. Helfand (1975)



Integrating Out the Polymer By Mean-Field Theory

) d%i = Self avoiding random walk

N segment chain
J o JMSO = Charge effects

Bead-spring model of polymer

Mean Field Presence of other chains
Approach Self consistent potential field w(r)

J

Configurations of a chain subjected to w(r)

o, rn) =V*G(r,r';n)—iw(r)G(r,r;n) G(r,r;0)=5(r-r’)
0S P
\ . l
.-“\\':‘,’_—.r.
BCs : ,_'\I‘NJ
Polymer - particle G(r, r'; n)
interactions




Field-Theory Model For Polymers

Density distributions
for polymer

Polymer mediated
effective interactions
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Configurations of a chain subjected to w(r)
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Tail Loop Bridge

Number and probability distribution




Adsorbed Layer: Particle Size Effects
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Bridging: Particle Size Effects
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Effective interactions

Monte Carlo Moves &
Equilibration

Cluster Statistics and Gelation
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Volume fraction at which a space
spanning cluster is observed



Cluster Statistics and Gelation
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Determining Elastic Properties
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Simple Network Theories: Elastic Modulii = Number of Bridges in backbone




Elastic Modulii of Gels
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Elastic modulus, G
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v'Smaller particles -> stronger reinforcement.

v'Smaller quantities of nanoparticles are required.

v Bridging induced clustering of particles responsible for reinforcement.

*Surve, Prymitsyn, Ganesan, Phys. Rev. Lett.

Much Stronger Enhancements of Moduli in Smaller Particles



Scaling of Elastic Modulii of Gels

Simulation results” Experimental data
1.E+03 = 1.E+05 =
LE+02 ¢ 1.E+03 |
. 1E+01 ﬁ
O - 1.E+01 |
1E+00 | i
1E-01 1.E-01
1E02 bt e L
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Particle volume fraction, (1)-1].) M-Nc)

*Surve, Prymitsyn, Ganesan, Phys. Rev. Lett.

Universal scaling of elastic modulus




Conclusions - Part IT

v'Gelation

v'For smaller particles, gelation occurs at very low
volume fractions

v'Small particles -> dense networks

v'Small particles -> Much stronger enhancements
in modulii






