

College Park 17-04-2007

K. Kremer

Max Planck Institute for Polymer Research, Mainz

Max-Planck Institute for Polymer Research Mainz

Central Topics of the Theory Group

\Rightarrow Method Development,

- Scientific Open Source Software (ESPResSo)
- ⇒Multiscale Modeling
- \Rightarrow Analytic Theory of disordered Systems
- ⇒Long Range Interactions, Hydrodynamics
- \Rightarrow Charged Systems, Polyelectrolytes, Gels
- \Rightarrow Membranes....Biophysics
- \Rightarrow Complex Fluids
- ⇒Computational Chemistry of Solvent-Solute Systems
- ⇒Melts, Networks Relaxation, NEMD ...
- ⇒Soft Matter and Electronic Properties

COWORKERS:

L. Delle Site

N. Van der Vegt D. Andrienko, M. Praprotnik, B. Hess, X. Zhou (Los Alamaos Nat. Lab.) W. Schravendijk, V. Harmandaris D. Reith (Fraunhofer Institute, Bonn)

N. Adhikari (Univ. Katmandu) F. Müller-Plathe (TU Darmstadt) R. Everears (ENS Lyon) O. Hahn (Würzburger Druckmaschinen) D. Mooney (Univ. College Dublin) H. Schmitz (Bayer AG) W. Tschöp (DG Bank) S. Leon (UPM Madrid) C. F. Abrams (Drexel)

H. J. Limbach (Nestle)

BMBF Center for Materials Simulation, EU FP6, Bayer, BASF, DSM, Rhodia, Freudenberg, Nestle

- Structure Property Relations for Soft Matter => Linking Scales
 - Interplay universal system specific aspects
 - Truly quantitative information

Soft Matter??

Thermal energy of particles/ per degree of freedom E=kT ⇒ Room temperature 300K:

	$E = 1.38 \cdot 10^{-23} J / K \cdot 300 K$	
	$\approx 4.1 \cdot 10^{-21} J = kT$	
Chemical Bond	$E \approx 3 \cdot 10^{-19} J \approx 80 kT$	
Hydrogen Bond	$E \approx 6 kT - 10 kT$	
Soft Matter: Thermal Energy dominates properties		

Soft Matter I: Energy Density

Polymer Glas (Plastics, Rubber):

 $E/V \approx 10^{-2}...10^{-1} kT/Å^{3}$

100 to 10000 times "softer" than "normal" crystals

strand-strand distance 3-6 Å

Soft Matter I: Elastic Constant E

 $E \approx 100GPa = 10^{11} Nm/m^{3}$ $\approx 25kT/A^{\circ}^{3}$

Polymer Glas (Plastics, Rubber):

$$E \approx 10..10^{3} MPa = 10^{7} ..10^{9} Nm/m^{3}$$
$$\approx 0.0025 ..0.25kT/A^{3}$$

100 to 10000 times "softer" than "normal" crystals

Soft Matter

"Soft" means:

- low energy density - nanoscopic length scales (10Å ...1000Å) - large fluctuations - thermal energy k_BT relevant energy scale

100 to 100000 times softer than normal crystals

Energy Scale kT for T=300K

- $E = 1.38 \cdot 10^{-23} J / K \cdot 300 K$
- $kT \approx 4.1 \cdot 10^{-21} J$
- $kT \approx 2.5 \cdot 10^{-2} eV$
- $kT \approx 9.5 \cdot 10^{-4} E_{H}$
- $kT \approx 4.1 \, pNnm$
- $kT \implies 200 \ cm^{-1}$
- $kT \implies 0.6 \, kcal / mol$
- $kT \implies 2.5 kJ / mol$

Electronic structure, CPMD

Quantum Chemistry

Biophysics Membranes, AFM

Spectroscopy

Polymers Structure Property Relations

Molecular/generic

Polymers Structure Property Relations

Architectures I:

Linear polymers:

Branched polymers

Intramolecular entropy : S = kT O(N)

Architectures II:

Block Copolymers

(Shearing) Lamellar Systems -Block Copolymers, Smectics, ...

T. Soddemann, H. X. Guo, B. Dünweg, K. K.

Shearing Lamellar Systems: Dimers

T. Soddemann, H. X. Guo, B. Dünweg, K. K.

Universal Confinement: Links & Stress

SMALL STRESSLARGE STRESS

R Everaers&K. K (1996), RE (1999)

Polymers

Structure Property Relations

versus

. .

Atomistic

- - -

 $N_e \approx 5-6$ $M_e \approx 1500$

Glass transition temperature T_G of polymers

Polymer	<i>T</i> _G (K)
Polyethylene (LDPE)	150K
Polypropylene (PP, atactic)	250K
Poly(vinyl acetate) (PVAc)	300K
Polyethylene terephthalate (PET)	350K
Poly(vinyl alcohol) (PVA)	360K
Poly(vinyl chloride) (PVC)	355K
Polystyrene (PS)	370K
Polypropylene (PP, isotactic)	273K
Poly(3-hydroxybutyrate) (PHB)	273K
Poly(methylmethacrylate) (PMMA, atactic)	380K
Polycarbonate (BPA – PC)	420K
HIP(TMC)- Polycarbonate	≈ 520K

Mixtures Polymer A, B

#*AA*, #*BB*, #*AB* contacts =*O*(*N*)

 $\langle R^2(N) \rangle \propto N$ $U_{AB} \propto N \mathcal{E}_{AB}$ $U_{AA} \approx U_{BB} \propto N \varepsilon$ $\mathcal{E}_{eff} = \mathcal{E}_{AB} - \mathcal{E}$ Phase separation, critical interaction $\mathcal{E}_{eff}^{c} = const \cdot N^{-1}$ "chemistry" ("generic" (**Intra-chain entropy invariant => small energy differences => phase separation**

Example Viscosity η of a polymer melt (extrusion processes)

(typical values for BPA-PC)

Time and length scales

 \Leftrightarrow

chemistry specific

Semi macroscopic $L \approx 100$ Å - 1000Å $T \approx 0$ (1 sec)

Mesoscopic L ≈ 10 Å - 50Å T $\approx 10^{-8}$ - 10⁻⁴ sec Entropy dominates

Mesoscopic L ≈ 10 Å - 50Å T $\approx 10^{-8} - 10^{-4}$ sec Entropy dominates

generic/universal

Microscopic

- $L \approx 1$ Å 3Å
- $T \approx 10^{-13} sec$

Energy dominates

(Sub)atomic electronic structure chemical reactions excited states

Interplay Energy ⇔ Entropy Free Energy Scale: kBT

Examples

- Polycarbonate
- (Polystyrene)
- Melt Dynamics (Rheology)
- (Membranes)
- Challenges Outlook AdResS: Adaptive Resolution Scheme

Polycarbonate (PC) and the PC/Ni interface

Grooves and address pits of a die cast sample of polycarbonate for a high storage density (**blue laser**) optical disc

Bayer Materials

Why study Polycarbonate and the PC/Ni interface?

"only" high tech commodity polymer

Why study Polycarbonate and the PC/Ni interface?

"only" high tech commodity polymer

Typical Chain Ends

Specific Adsorption

Two extreme cases

end adsorption only energy dominated "inert" surface entropy dominated

Polycarbonate on Metal Surface

- Linking Scales for Bisphenol-A-Polycarbonate (BPA-PC)
 - Molecular Coarse-Graining (=> Polymer melts, bulk)
 - Inverse Mapping, (Phenol Diffusion => F. Müller-Plathe)
- BPA-PC Melts near Nickel Surfaces
 - Ab initio calculations: Surface/molecule energetics
 - Multiscale simulation: Molecular orientation at liquid/metal interface
 - Adsorption at a step
 - Shearing a melt

Molecular Coarse-Graining of Bisphenol-A-Polycarbonate

Coarse-graining: map bead-spring chain over molecular structure. => Many fewer degrees of freedom

Inverse mapping: grow atomic structure on top of coarsegrained backbone =>Large length-scale equilibration in an atomically resolved polymer

Mapping Scheme

W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, O. Hahn, Acta Polym. *49*, 61 (1998); ibid. *49*, 75

Interaction Energies in the Coarse-Grained Model

Software: ESPResSo

Open Source Modular Simulation Package by C. Holm et al

Extensible Simulation Package

Local contact: Thorsten Stühn http://www.espresso.mpg.de/

	modulo			
Script Level	blockfile part inter setmd integrate analyze	Tcl commands fo	structured file I/O setting particle properties defining interactions setting simulation parameters integration analysis, measuring observables	
Simulation Level	Molecular Dynamics Forces Thermostat Monte Carlo Energy Pressure	Integration by Newton's equation F=ma Calculation of the forces from all interactions Temperature control for constant temperature MD Integration using Boltzmann–Factors Calculation of the energies from all interactions Pressure is needed for e.g. constant pressure simulaions		
Special Task Level	Communication	Data exchange in parallel runs outside integration		
	Linked cell Verlet lists Ghost particles	Algorithms for sh	rting particles spatially ort-ranged interactions calculation ata exchange in parallel integrations	
	P3M MMM1D/2D LJ., Debye-Hückel FENE, bond-angle	Potentials for election sh	ectrostatic in periodic b.c. using FFT ectrostatics in partially periodic b.c. ort-ranged interacions onded interactions	
	IMD	Realtime visualization using VMD		

Content

Results for Melts, N=20....120

- Molecular Coarse-Grained Melt

$$\left\langle R_G^2(N) \right\rangle / \underset{N}{\overset{o}{\simeq}} 37 \overset{A}{\text{A}}$$

R_G of coarse grained simulations agrees to n-scattering experiments!

- Reintroduce Details: Inverse Mapping

Bisphenol-A Polycarbonate: Inverse Mapping Control of Approach vs Experiment

Inverse Mapping

Slowly introduce excluded volume Short relaxation run for 1-2 ps! $\langle \Delta r^2 \rangle^{1/2} \leq 1.5 \dot{A}$

How good are the conformations? Dynamics?

Conformation: Simulation n-Scattering

Structure factors of (deuterated) BPA-PC

Right: standard BPA-PC Bottom: fully deuterated BPA-PC

J. Eilhard et al,J. Chem. Phys. **110**, 1819 (1999)B. Hess et al, Soft Matter 2006

DETOUR Polystyrene

Orientation along backbone For sampling

lso

Syndio I

Syndio II

DETOUR Polystyrene

Orientation along backbone For sampling

lso

Syndio I

Syndio II

DETOUR Polystyrene

Direct comparison simulation vs x-ray scattering

Polycarbonate Melt Dynamics coarse grained - atomistic

- Linking Scales for Bisphenol-A-Polycarbonate (BPA-PC)
 - Molecular Coarse-Graining

=> Long chain melt dynamics

Inverse Mapping
 long chain atomistic trajectories

Polycarbonate Melt Dynamics coarse grained - atomistic

- Linking Scales for Bisphenol-A-Polycarbonate (BPA-PC)
 - Molecular Coarse-Graining

=> Long chain melt dynamics

Entanglement analysis

Inverse Mapping
 long chain atomistic trajectories

Primitive Path Analysis for equilibrated long chain polymer melts

- Length of primitive path
 ↔
 - tube diameter

(Doi & Edwards)

Problem: "Obstacles" are not fixed in space →primitive path determination needs to be consistent: →Simultaneously for all chains!

Constraints: Multi-Chain Effects Constraints red-black

- 2 Constraints (links)
 - **0** Constraints

2 Constraints

1 Constraint

Entanglements: Primitive Path Analysis

•Evolution of entangled chain cluster (Everaers et al , Science 2004)

Plateau Modulus Different Polymers Melts and Solutions: Tological analysis and experiment

Polycarbonate Melt Dynamics coarse grained - atomistic

- Linking Scales for Bisphenol-A-Polycarbonate (BPA-PC)
 - Molecular Coarse-Graining

=> Long chain melt dynamics

Entanglement analysis

Inverse Mapping
 long chain atomistic trajectories
 from coarse grained trajectories

Atomistic vs cg Simulation: Time Mapping

mean square displacements atomistic vs coarse grained

Largest atomistic systems generated by this approach:

Box of 200 chains of N=120 (≈ 20 Ne)

$$L \cong 100 \times 100 \times 100 nm^3$$

 $t_{\rm max} \cong 4 \times 10^{-5} \, {\rm sec}$

100 chains of N=60

$$L \cong 60 \times 60 \times 60 nm^{3}$$
$$t_{\rm max} \cong 6 \times 10^{-5} \, {\rm sec}$$

Atomistic vs cg Simulation: Time Mapping

Dynamic scattering function atomistic vs coarse grained NO ADJUSTABLE PARAMETER!

Leon et al, Macrom. 2005, Hess et al Soft Matter, 2006

Largest atomistic systems generated by this approach:

Box of 200 chains of N=120 (≈ 20 Ne)

$$L \cong 100 \times 100 \times 100 nm^3$$

 $t_{\rm max} \cong 4 \times 10^{-5} \, {\rm sec}$

100 chains of N=60

$$L \cong 60 \times 60 \times 60 nm^{3}$$
$$t_{\rm max} \cong 6 \times 10^{-5} \, {\rm sec}$$

Polycarbonate on Metal Surface

- Linking Scales for Bisphenol-A-Polycarbonate (BPA-PC)
 - Molecular Coarse-Graining
 - Inverse Mapping, (atomistic trajectories for entangled melts for up to almost 10⁻⁴sec!)

• BPA-PC Melts near Nickel Surfaces

- Ab initio calculations: Surface/molecule energetics
- Multiscale simulation: Molecular orientation at liquid/metal interface

Simulating BPA-PC/Metal Interfaces

Molecular structure coarse-grained onto bead-spring chain

Simulation of coarse-grained BPA-PC liquids (T = 570K) next to metal surface

Specific surface interactions investigated via *ab initio* calculations

C.F. Abrams, et al. PRE 021807 (2003); L. DelleSite, et al. PRL 156103 (2002); BMBF Zentrum MatSim

Ab initio Investigations of Comonomeric Analogues on Nickel

CPMD: Conclusions

- Strong repulsion of propane and carbonic acid
 - + the strong orientational dependence
 - + short interaction range of phenol with Ni {111}
 - →

Internal phenylene comonomers in BPA-PC are sterically hindered from adsorbing on Ni {111}. →

Torsional freedom in carbonate group allows for terminal phenoxy groups to adsorb

Schematic structure of "End-Sticky" Melts

Chains "compressed" Chains "elongated" Normal Bulk conformations

→ Coupling Surface \leftarrow → Bulk?

Other Chain Ends Energy - Entropy Competition

Polycarbonate on Metal Surface

- Linking Scales for Bisphenol-A-Polycarbonate (BPA-PC)
 - Molecular Coarse-Graining
 - Inverse Mapping

BPA-PC Melts near Nickel Surfaces

- Ab initio calculations: Surface/molecule energetics
- Multiscale simulation: Molecular orientation at liquid/metal interface

A few Challenges

- Dual-Triple... Scale Simulations/Theory
 - Adaptive quantum⇔force field⇔coarse grained ...

 $\Delta \approx 0$ ppm

= +0.8 pp

- Noupourgar Injatacijoua;
 - Morphology, Solvation, Adsorption...
- Contormations (*) Electronic Properties
 - E.g. coupling of aromatic groups to backbone conformation,
 or to other chains
- Online Experiments:
 Manoscale Experiments, long Times

Application: Multiscale Simulation of Polymer/Nanotube Composites

Adaptive Inhomogenous Coarse-Graining

Specific atomic-scale energetics dominant at surface

Molecule-scale entropy dominant in bulk

Coarsened fragments provide equilibrated "boundary conditions" for full-blown embedded atomistic simulation

Motivation/Considerations

All-Atom Simulation

- study (classical) processes on atomistic level
- short times and small system sizes

Mesoscopic MD Simulation

- reduced set of degrees of freedom (DOFs) => longer times, larger systems
- chemical details usually lost

Hybrid Simulation

- combine adaptively atomistic and more coarse grained simulations
- changing DOFs on the fly:

AdResS – Adaptive Resolution Scheme

M. Praprotnik, L. Delle Site, KK, 2005ff

Adaptive Methods: Changing degrees of freedom on the fly

Requirements

- Same center-center g(r)
- Same mass density
- Same Pressure (=>Eq. of state)
- Same temperature
- Free exchange between regimes

Simple two body potential

- ⇒ Some analogies to 1st order phase transition
- \Rightarrow Phase equilibrium
- ⇒ Thermostat has to provide/take out latent heat due to change in degrees of freedom

VW Foundation Project

M. Praprotnik, L. DelleSite, KK, JCP2005, PRE 2006,2007, JCP2007,

AdResS: Adaptive Resolution Simulations Changing degrees of freedom on the fly

- 6 A tetrahedral molecule has a defined spatial orientation and 3N = 12 DOFs:
 - 3 translational
 - a 3 rotational
 - ▲ 3N − 6 = 6 vibrational
- One particle mesoscopic molecule has no defined spatial orientation and only 3 translational DOFs.
 M. Praprotnik, L. DelleSite, KK, JCP2005

Tetrahedron, repulsive LJ Particles, FENE bonds	⇔	Hybrids	≎	"Softer" Sphere
Explicit Atom regime	⇔	Transition regime	⇔	Coarse Grained regime

General Considerations

 $T_{ex} = T_{cg}$ $\mu_{ex} = \mu_{cg}, \qquad p_{ex} = p_{cg},$

Transition Regime: Changing Degrees of Freedom (DOF)

- The number of DOF is n = n(x) with ; n_A = const_A; n_B = const_B; and n_Δ = n(x)
- The system is in equilibrium which implies: $\lim_{x \to d^{-}} \frac{\partial F_A(x)}{\partial x} = \lim_{x \to d^{+}} \frac{\partial F_B(x)}{\partial x} = 0$

Temperature: Changing Degrees of Freedom (DOF)

Definition of Temperature in transitions regime:

Fractional degrees of freedom

=> generalization of equipartition theorem

=> Defines thermostat to take out/in "latent heat of the DOFs"

$$H(q) = q^n$$

$$\left\langle H(q)\right\rangle_{\alpha} = \frac{\alpha}{n}k_{B}T$$

a is the fractionality of DOF q

 $\alpha = 1$ and n = 2 standard case

Temperature: Noninteger Degrees of Freedom (DOF)

6 For the fractional quadratic DOF Θ with the weight w = α we can write the partition function as:

$$\exp(-\beta F_{\alpha}) = C \int \exp(-\beta f(\alpha) p_{\Theta}^2/2) \, dV_{\alpha} =$$
$$= 2C \int_0^{\infty} \exp(-\beta f(\alpha) p_{\Theta}^2/2) \, |p_{\Theta}|^{\alpha-1} \frac{dp_{\Theta}}{\Gamma(\alpha)} =$$
$$= \frac{2^{\alpha/2} C \Gamma(\alpha/2)}{\Gamma(\alpha)} f(\alpha)^{-\alpha/2} \beta^{-\alpha/2} \sim \beta^{-\alpha/2}.$$

 α .

M. Praprotnik, K. Kremer, L. Delle Site, Phys. Rev. E 75, 017701 (2007).
AdResS: Main Steps

AdRess consists of two main steps:

- Derive the effective pair potential U^{cm} between coarse-grained molecules on the basis of the reference all-atom system.
- 2. Couple the atomistic and mesoscopic scales:

$$\mathbf{F}_{\alpha\beta} = w(X_{\alpha})w(X_{\beta})\mathbf{F}_{\alpha\beta}^{atom} + [1 - w(X_{\alpha})w(X_{\beta})]\mathbf{F}_{\alpha\beta}^{cm},$$

where

$$\mathbf{F}_{\alpha\beta}^{atom} = \sum_{i\alpha,j\beta} \mathbf{F}_{i\alpha j\beta}^{atom}$$

is the sum of all pair interactions between explicit atoms of molecules α and β and

$$\mathbf{F}_{i\alpha j\beta}^{atom} = -\frac{\partial U^{atom}}{\partial \mathbf{r}_{i\alpha j\beta}},$$
$$\mathbf{F}_{\alpha\beta}^{cm} = -\frac{\partial U^{cm}}{\partial \mathbf{R}_{\alpha\beta}}.$$

Transition Regime: Force Interpolation

Particle Exchange

Radial Distributions, Number of neighbours

Particle Numbers, Density

Radial Distributions, Densities, high density

(m) Equation of state for $\rho = 0.175$ and T = 1.

1st "Application": Chain in solvent

Explicit resolution regime moves with the polymer

M. Praprotnik, L. Delle Site, KK, JCP (2007)

1st Application: Chain in solvent

Explicit resolution regime moves with the polymer

1st Application: Chain in solvent

Explicit resolution regime moves with the polymer

2nd Application TIP3P Water

Collaboration with Cecilia Clementi, Silvina Matysiak, Department of Chemistry, Rice University, Houston, Texas

water plays a role at different length scales...

all-atom model, physical force-field

adaptive, hybrid scheme to switch from one to the other "on-the-fly"

coarse-grained model, effective interactions

First step: design a coarse-grained model of water (thermodynamically, dynamically and structurally) Rigid TIP3P all-atom water [Jorgensen et al, J. Chem. Phys. 79:926 (1983)] $U_{mn} = \sum_{i}^{On} \sum_{j}^{m} \frac{q_{i}q_{j}e^{2}}{r_{ii}} + 4\varepsilon_{OO} \left[\left(\frac{\sigma_{OO}}{r_{OO}} \right)^{12} - \left(\frac{\sigma_{OO}}{r_{OO}} \right)^{6} \right]$ direct Properties Model **inverse** Interaction

potential

Radial distribution functions

New Single-site model

(needed to match correlation functions!)

Thermodynamics (pressure, temperature) is also in excellent agreement, 4 nearest neighbors in first shell

Requirements

- Same center-center rdf
- Simple two-body potential
- Same mass density
- Same Pressure
- Same temperature
- Free exchange between regimes

- \Rightarrow Phase equilibrium
- ⇒ Thermostat has to provide/take out latent heat due to change in degrees of freedom
- \Rightarrow Molecules adapt their level of resolution
- \Rightarrow Rotational DOFs are gradually 'swichted on/off'
- ⇒ Same linear momentum

Transition Regime

 $F_{\alpha\beta} =$ $w(X_{\alpha})w(X_{\beta})F_{\alpha\beta}^{atom} +$ $[1 - w(X_{\alpha})w(X_{\beta})]F_{\alpha\beta}^{cm}$

Interactions

explicit-explicit CG-CG hybrid-hybrid

CG- hybrid: CG-CG explicit-hybrid: explicit-explicit

In explicit regime: Reaction field for electrostatics

The simulation speed-up is $\sim 17 - 20$ compared to atomistic simulations.

M. Praprotnik, L. Delle Site, K. Kremer, S. Matysiak, C. Clementi, cond-mat/0611544.

Explicit resolution regime moves with the polymer

Adaptive Resolution Simulations of Water

Conclusion: A few Challenges

- Dual-Triple... Scale Simulations/Theory
 - Adaptive quantum⇔force field⇔coarse grained …
- Nonbonded Interactions: NEMD, Morphology...
 - Accuracy kBTO(1/N) needed!

 $\Delta \approx 0$ ppm

= +0.8 pp

- E.g. coupling of aromatic groups to backbone conformation,
 or to other chains
- Online Experiments: – Nanoscale Experiments, long Times

A few Challenges

- Dual-Triple... Scale Simulations/Theory
 Adaptive quantum⇔iorce field⇔coarse
 grained ...
- Nonbonded Interactions:
 Morphology, Solvation, Adsorption...
- Conformations <> Electronic Properties

 E.g. coupling of aromatic groups to
 backbone conformation,
 or to other chains

∆ = +0.8 pp

Online Experiments:
 Manoscale Experiments, long Times

Columnar Phases of Hexabenzo-Coronene (D. Andrienko et al)

Columnar Phases of Hexabenzo-Coronene (D. Andrienko et al)

J. Kirckpatric, J. Nelson, V. Marcon, KK, D. Andrienko in prep. 2006

Columnar Phases of Hexabenzo-Coronene (D. Andrienko et al)

J. Kirckpatric, J. Nelson, V. Marcon, KK, D. Andrienko in prep. 2006

Photoswitchable Azobenzene

VW Stiftung, L. Delle Site, KK - D. Marx (Bochum)

Conclusion: A few Challenges

- Dual-Triple... Scale Simulations/Theory
 - Adaptive quantum⇔force field⇔coarse grained …
- Nonbonded Interactions: NEMD, Morphology...
 - Accuracy kBTO(1/N) needed!

 $\Delta \approx 0$ ppm

= +0.8 pp

- E.g. coupling of aromatic groups to backbone conformation,
 or to other chains
- Online Experiments: – Nanoscale Experiments, long Times

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

10 Years Theory at the MPIP, Oct. 2005