Numerical analysis for the BCF method in complex fluids simulations

Tiejun Li

School of Mathematical Sciences,
Peking University,
Beijing 100871
tieli@pku.edu.cn

Joint work with Weinan E and Pingwen Zhang

CSCAMM conference, April 16-19, Maryland

Outline

Introduction

Numerical analysis

Polymeric fluids

- Complex fluids: viscoelastic fluids containing many macromolecules.

- Anomalous viscoelastic properties: shear shinning, shear thicking, tubeless siphon, Rod climbing, etc.
- Many industrial usage: liquid crystal displayer, synthesized products (CD, ...), plastics, ...

$$
\underset{\mathrm{Cl}}{\mathrm{CCH}_{2}-\mathrm{CH}_{\mathrm{n}}}
$$

Mathematical models (solution case)

- Newtonian fluid (Linear constitutive relation)

$$
\left\{\begin{aligned}
\boldsymbol{u}_{t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}+\nabla p & =\nabla \cdot \tau \\
\nabla \cdot \boldsymbol{u} & =0
\end{aligned}\right.
$$

where $\tau=\tau_{s}=\eta_{s}\left(\nabla \boldsymbol{u}+\nabla \boldsymbol{u}^{T}\right)$.

- Non-Newtonian fluid (Nonlinear constitutive relation)
where $\tau=\tau_{s}+\tau_{p}, \tau_{p}$ is due to the polymer's contribution.

Mathematical models (solution case)

- Newtonian fluid (Linear constitutive relation)

$$
\left\{\begin{aligned}
\boldsymbol{u}_{t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}+\nabla p & =\nabla \cdot \tau \\
\nabla \cdot \boldsymbol{u} & =0
\end{aligned}\right.
$$

where $\tau=\tau_{s}=\eta_{s}\left(\nabla \boldsymbol{u}+\nabla \boldsymbol{u}^{T}\right)$.

- Non-Newtonian fluid (Nonlinear constitutive relation)

$$
\left\{\begin{aligned}
\boldsymbol{u}_{t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}+\nabla p & =\nabla \cdot \tau \\
\nabla \cdot \boldsymbol{u} & =0
\end{aligned}\right.
$$

where $\tau=\tau_{s}+\tau_{p}, \tau_{p}$ is due to the polymer's contribution.

Coarse graining of polymers

- Molecular dynamics: limited space and time scales
- Macroscopic modelling: neglecting all of the molecular details
- Compromise: kinetic theory Rending nersictence length: 1 Length of one single polymer: l

Coarse graining of polymers

- Molecular dynamics: limited space and time scales
- Macroscopic modelling: neglecting all of the molecular details
- Compromise: kinetic theory

Bending persistence length: l_{p}
Length of one single polymer: l

Flexible

Rigid

Semiflexible

Coarse graining of polymers

- Molecular dynamics: limited space and time scales
- Macroscopic modelling: neglecting all of the molecular details
- Compromise: kinetic theory

Bending persistence length: l_{p}
Length of one single polymer: l

- Flexible

Flexible

Rigid

Coarse graining of polymers

- Molecular dynamics: limited space and time scales
- Macroscopic modelling: neglecting all of the molecular details
- Compromise: kinetic theory

Bending persistence length: l_{p}
Length of one single polymer: l

- Flexible: $l \gg l_{p}$
- Semi-flexible:

Flexible

Rigid

Semiflexible

Coarse graining of polymers

- Molecular dynamics: limited space and time scales
- Macroscopic modelling: neglecting all of the molecular details
- Compromise: kinetic theory

Bending persistence length: l_{p}
Length of one single polymer: l

- Flexible: $\quad l \gg l_{p}$
- Rigid: $l \ll l_{p}$
- Semi-flexible:

Flexible

Rigid

Semiflexible

Coarse graining of polymers

- Molecular dynamics: limited space and time scales
- Macroscopic modelling: neglecting all of the molecular details
- Compromise: kinetic theory

Bending persistence length: l_{p}
Length of one single polymer: l

- Flexible: $\quad l \gg l_{p}$
- Rigid: $\quad l \ll l_{p}$
- Semi-flexible: $\quad l \sim O\left(l_{p}\right)$

Flexible

Rigid

Semiflexible

Coarse graining of polymers

- Molecular dynamics: limited space and time scales
- Macroscopic modelling: neglecting all of the molecular details
- Compromise: kinetic theory

Bending persistence length: l_{p}
Length of one single polymer: l

- Flexible: $\quad l \gg l_{p}$
- Rigid: $\quad l \ll l_{p}$
- Semi-flexible: $\quad l \sim O\left(l_{p}\right)$

Flexible

Rigid

Semiflexible

Simplest flexible polymers

- Dumbbell model

Dumbbell model (dilute limit)

- Stochastic differential equations (homogeneous approximation, mean position)

$$
\left\{\begin{aligned}
d \boldsymbol{x} & =\boldsymbol{u} d t \\
d \boldsymbol{Q} & =\left(\kappa \boldsymbol{Q}-\frac{2}{\zeta} \boldsymbol{F}(\boldsymbol{Q})\right) d t+\sqrt{\frac{4 k_{B} T}{\zeta}} d \boldsymbol{W}
\end{aligned}\right.
$$

- Kramers Expression: $\tau_{p}=-n k_{B} T I+n\langle F(Q) \otimes Q\rangle$

Dumbbell model (dilute limit)

- Stochastic differential equations (homogeneous approximation, mean position)

$$
\left\{\begin{aligned}
d \boldsymbol{x} & =\boldsymbol{u} d t \\
d \boldsymbol{Q} & =\left(\kappa \boldsymbol{Q}-\frac{2}{\zeta} \boldsymbol{F}(\boldsymbol{Q})\right) d t+\sqrt{\frac{4 k_{B} T}{\zeta}} d \boldsymbol{W}
\end{aligned}\right.
$$

- Kramers Expression: $\tau_{p}=-n k_{B} \boldsymbol{T} \boldsymbol{I}+n\langle\boldsymbol{F}(\boldsymbol{Q}) \otimes \boldsymbol{Q}\rangle$

Dumbbell model (dilute limit)

- Stochastic differential equations (homogeneous approximation, mean position)

$$
\left\{\begin{aligned}
d \boldsymbol{x} & =\boldsymbol{u} d t \\
d \boldsymbol{Q} & =\left(\kappa \boldsymbol{Q}-\frac{2}{\zeta} \boldsymbol{F}(\boldsymbol{Q})\right) d t+\sqrt{\frac{4 k_{B} T}{\zeta}} d \boldsymbol{W}
\end{aligned}\right.
$$

- Kramers Expression: $\tau_{p}=-n k_{B} T \boldsymbol{I}+n\langle\boldsymbol{F}(\boldsymbol{Q}) \otimes \boldsymbol{Q}\rangle$
- Spring force

Dumbbell model (dilute limit)

- Stochastic differential equations (homogeneous approximation, mean position)

$$
\left\{\begin{aligned}
d \boldsymbol{x} & =\boldsymbol{u} d t \\
d \boldsymbol{Q} & =\left(\kappa \boldsymbol{Q}-\frac{2}{\zeta} \boldsymbol{F}(\boldsymbol{Q})\right) d t+\sqrt{\frac{4 k_{B} T}{\zeta}} d \boldsymbol{W}
\end{aligned}\right.
$$

- Kramers Expression: $\tau_{p}=-n k_{B} \boldsymbol{T} \boldsymbol{I}+n\langle\boldsymbol{F}(\boldsymbol{Q}) \otimes \boldsymbol{Q}\rangle$
- Spring force
- Hookean Dumbbell: $\boldsymbol{F}(\boldsymbol{Q})=H \boldsymbol{Q}$
- FENE Dumbbell: $F(Q)=\frac{H Q}{1-Q^{2} / Q_{0}^{2}}$

Dumbbell model (dilute limit)

- Stochastic differential equations (homogeneous approximation, mean position)

$$
\left\{\begin{aligned}
d \boldsymbol{x} & =\boldsymbol{u} d t \\
d \boldsymbol{Q} & =\left(\kappa \boldsymbol{Q}-\frac{2}{\zeta} \boldsymbol{F}(\boldsymbol{Q})\right) d t+\sqrt{\frac{4 k_{B} T}{\zeta}} d \boldsymbol{W}
\end{aligned}\right.
$$

- Kramers Expression: $\tau_{p}=-n k_{B} \boldsymbol{T} \boldsymbol{I}+n\langle\boldsymbol{F}(\boldsymbol{Q}) \otimes \boldsymbol{Q}\rangle$
- Spring force
- Hookean Dumbbell: $\boldsymbol{F}(\boldsymbol{Q})=H \boldsymbol{Q}$
- FENE Dumbbell: $\boldsymbol{F}(\boldsymbol{Q})=\frac{H Q}{1-Q^{2} / Q_{0}^{2}}$
- General nonlinear: $F(Q)=\gamma\left(Q^{2}\right) Q, \quad \gamma \geq 0$

Dumbbell model (dilute limit)

- Stochastic differential equations (homogeneous approximation, mean position)

$$
\left\{\begin{aligned}
d \boldsymbol{x} & =\boldsymbol{u} d t \\
d \boldsymbol{Q} & =\left(\kappa \boldsymbol{Q}-\frac{2}{\zeta} \boldsymbol{F}(\boldsymbol{Q})\right) d t+\sqrt{\frac{4 k_{B} T}{\zeta}} d \boldsymbol{W}
\end{aligned}\right.
$$

- Kramers Expression: $\tau_{p}=-n k_{B} T \boldsymbol{I}+n\langle\boldsymbol{F}(\boldsymbol{Q}) \otimes \boldsymbol{Q}\rangle$
- Spring force
- Hookean Dumbbell: $\boldsymbol{F}(\boldsymbol{Q})=H \boldsymbol{Q}$
- FENE Dumbbell: $\boldsymbol{F}(\boldsymbol{Q})=\frac{H Q}{1-Q^{2} / Q_{0}^{2}}$
- General nonlinear: $\boldsymbol{F}(\boldsymbol{Q})=\gamma\left(Q^{2}\right) \boldsymbol{Q}, \quad \gamma \geq 0$
- A coupled deterministic-stochastic system (u and Q)

Dumbbell model (dilute limit)

- Stochastic differential equations (homogeneous approximation, mean position)

$$
\left\{\begin{aligned}
d \boldsymbol{x} & =\boldsymbol{u} d t \\
d \boldsymbol{Q} & =\left(\kappa \boldsymbol{Q}-\frac{2}{\zeta} \boldsymbol{F}(\boldsymbol{Q})\right) d t+\sqrt{\frac{4 k_{B} T}{\zeta}} d \boldsymbol{W}
\end{aligned}\right.
$$

- Kramers Expression: $\tau_{p}=-n k_{B} \boldsymbol{T} \boldsymbol{I}+n\langle\boldsymbol{F}(\boldsymbol{Q}) \otimes \boldsymbol{Q}\rangle$
- Spring force
- Hookean Dumbbell: $\boldsymbol{F}(\boldsymbol{Q})=H \boldsymbol{Q}$
- FENE Dumbbell: $\boldsymbol{F}(\boldsymbol{Q})=\frac{H Q}{1-Q^{2} / Q_{0}^{2}}$
- General nonlinear: $\boldsymbol{F}(\boldsymbol{Q})=\gamma\left(Q^{2}\right) \boldsymbol{Q}, \quad \gamma \geq 0$
- A coupled deterministic-stochastic system (\boldsymbol{u} and \boldsymbol{Q}).

SDE for liquid crystal (high concentration case)

- Rod model for liquid crystals: an interacting particle system.

SDE for liquid crystal (high concentration case)

- Rod model for liquid crystals: an interacting particle system.

p The non-dimensionalized form for pdf $\psi:(U$ is usually taken as mean field potential, $\mathcal{R}=m \times \nabla_{m}$.)

$$
\partial_{t} \psi=\frac{1}{D e} \mathcal{R} \cdot(\mathcal{R} \psi+\psi \mathcal{R U})-\mathcal{R} \cdot(m \times \kappa \cdot m \psi)
$$

- The corresponding stochastic version: nonlinear SDEs in the sense of

SDE for liquid crystal (high concentration case)

- Rod model for liquid crystals: an interacting particle system.

- The non-dimensionalized form for pdf $\psi:(U$ is usually taken as mean field potential, $\mathcal{R}=\boldsymbol{m} \times \nabla_{m}$.)

$$
\partial_{t} \psi=\frac{1}{D e} \mathcal{R} \cdot(\mathcal{R} \psi+\psi \mathcal{R} U)-\mathcal{R} \cdot(\boldsymbol{m} \times \kappa \cdot \boldsymbol{m} \psi)
$$

- The corresponding stochastic version: nonlinear SDEs in the sense of McKean.

SDE for liquid crystal (high concentration case)

- Rod model for liquid crystals: an interacting particle system.

- The non-dimensionalized form for pdf $\psi:(U$ is usually taken as mean field potential, $\mathcal{R}=\boldsymbol{m} \times \nabla_{m}$.)

$$
\partial_{t} \psi=\frac{1}{D e} \mathcal{R} \cdot(\mathcal{R} \psi+\psi \mathcal{R} U)-\mathcal{R} \cdot(\boldsymbol{m} \times \kappa \cdot \boldsymbol{m} \psi)
$$

- The corresponding stochastic version: nonlinear SDEs in the sense of McKean.

$$
\frac{\partial \boldsymbol{m}}{\partial t}+\left(\boldsymbol{u} \cdot \nabla_{\boldsymbol{x}}\right) \boldsymbol{m}=(\boldsymbol{I}-\boldsymbol{m} \otimes \boldsymbol{m}) \circ\left(-\frac{1}{D e} \mathcal{R} U+\boldsymbol{m} \times \kappa \cdot \boldsymbol{m}+\sqrt{\frac{2}{D e}} \dot{\boldsymbol{W}}(t)\right) .
$$

where " \circ " means the Stratonovich integral because the Brownian motion is on the sphere \mathbb{S}^{2}.

Outline

Introduction

Numerical analysis

Numerical methods for the dumbbell model

- CONNFFESSIT: Calculation Of Non-Newtonian Flows: Finite Elements and Stochastic SImulation Technique (Laso-Öttinger)

- Brownian Configuration Fields (BCF)

Numerical methods for the dumbbell model

- CONNFFESSIT: Calculation Of Non-Newtonian Flows: Finite Elements and Stochastic SImulation Technique (Laso-Öttinger)

- Brownian Configuration Fields (BCF)

Numerical methods for the dumbbell model

- CONNFFESSIT: Calculation Of Non-Newtonian Flows: Finite Elements and Stochastic SImulation Technique (Laso-Öttinger)

- Brownian Configuration Fields (BCF)

$$
d \mathbf{Q}+u \cdot \nabla \boldsymbol{Q}=\left(\kappa \mathbf{Q}-\frac{2}{\zeta} \mathbf{F}(\mathbf{Q})\right) d t+\sqrt{\frac{4 k_{B} T}{\zeta}} d \mathbf{W}
$$

Numerical methods for the dumbbell model

- CONNFFESSIT: Calculation Of Non-Newtonian Flows: Finite Elements and Stochastic SImulation Technique (Laso-Öttinger)

- Brownian Configuration Fields (BCF)

$$
d \mathbf{Q}+u \cdot \nabla \boldsymbol{Q}=\left(\kappa \mathbf{Q}-\frac{2}{\zeta} \mathbf{F}(\mathbf{Q})\right) d t+\sqrt{\frac{4 k_{B} T}{\zeta}} d \mathbf{W}
$$

- Replacing Lagrangian description with Eulerian description

Numerical methods for the dumbbell model

- CONNFFESSIT: Calculation Of Non-Newtonian Flows: Finite Elements and Stochastic SImulation Technique (Laso-Öttinger)

- Brownian Configuration Fields (BCF)

$$
d \mathbf{Q}+u \cdot \nabla \boldsymbol{Q}=\left(\kappa \mathbf{Q}-\frac{2}{\zeta} \mathbf{F}(\mathbf{Q})\right) d t+\sqrt{\frac{4 k_{B} T}{\zeta}} d \mathbf{W}
$$

- Replacing Lagrangian description with Eulerian description
- Replacing random particles with random fields

An overview of the results for the BCF methods

- Well-posedness analysis
- Hookean dumbbell under shear flow: Jourdain-Lelievre-Le Bris (2002)
- FENE dumbbell under shear flow: Jourdain-Lelievre-Le Bris (2004)
- General dumbbell model, high dim with polynomial growth: E-Li-Zhang (2004)
- Convergence analysis
- Hookean dumbbell under shear flow: Jourdain-Lelievre-Le Bris, E-Li-Zhang (2002)
- Rod-like model under shear flow: Li-Zhang-Zhou (2004)
- High dimensional Hookean dumbbell model: Li-Zhang (2005)
- Nonlinear dumbbell: Only partial results.

Simple SDE and discretization

- Simple SDE

$$
d X_{t}=b\left(X_{t}\right) d t+d W_{t}
$$

- Euler-Maruyama scheme

$$
X_{n+1}=X_{n}+\Delta t b\left(X_{n}\right)+\Delta W_{n}
$$

where ΔW_{n} are i.i.d. $N(0, \Delta t)$ Gaussian R.V.s.

Simple SDE and discretization

- Simple SDE

$$
d X_{t}=b\left(X_{t}\right) d t+d W_{t}
$$

- Euler-Maruyama scheme

$$
X_{n+1}=X_{n}+\Delta t b\left(X_{n}\right)+\Delta W_{n}
$$

where ΔW_{n} are i.i.d. $N(0, \Delta t)$ Gaussian R.V.s.

- Convergence result: Strong order 1. (Lipschitz continuity assumption)

Simple SDE and discretization

- Simple SDE

$$
d X_{t}=b\left(X_{t}\right) d t+d W_{t}
$$

- Euler-Maruyama scheme

$$
X_{n+1}=X_{n}+\Delta t b\left(X_{n}\right)+\Delta W_{n}
$$

where ΔW_{n} are i.i.d. $N(0, \Delta t)$ Gaussian R.V.s.

- Convergence result: Strong order 1. (Lipschitz continuity assumption)

$$
\sup _{n}\left(\mathbb{E} E_{n}^{2}\right)^{\frac{1}{2}} \leq C \Delta t
$$

BCF scheme for Hookean dumbbell under shear flow

- Discretized equations (temporal and stochastic)

$$
\begin{aligned}
u^{n+1}-u^{n} & =u_{y y}^{n+1} \Delta t+\partial_{y}\left(\left\langle P^{n} Q^{n}\right\rangle_{N}\right) \Delta t \\
P_{i}^{n+1} & =P_{i}^{n}+\left(u_{y}^{n+1} Q_{i}^{n}-\frac{P_{i}^{n}}{2}\right) \Delta t+d V_{i}^{n} \\
Q_{i}^{n+1} & =Q_{i}^{n}-\frac{Q_{i}^{n}}{2} \Delta t+d W_{i}^{n}
\end{aligned}
$$

where

$$
\left\langle P^{n} Q^{n}\right\rangle_{N} \triangleq \frac{1}{N} \sum_{i=1}^{N} P_{i}^{n} Q_{i}^{n}
$$

> Remark: u^{n} are random variables, too

BCF scheme for Hookean dumbbell under shear flow

- Discretized equations (temporal and stochastic)

$$
\begin{aligned}
u^{n+1}-u^{n} & =u_{y y}^{n+1} \Delta t+\partial_{y}\left(\left\langle P^{n} Q^{n}\right\rangle_{N}\right) \Delta t \\
P_{i}^{n+1} & =P_{i}^{n}+\left(u_{y}^{n+1} Q_{i}^{n}-\frac{P_{i}^{n}}{2}\right) \Delta t+d V_{i}^{n} \\
Q_{i}^{n+1} & =Q_{i}^{n}-\frac{Q_{i}^{n}}{2} \Delta t+d W_{i}^{n}
\end{aligned}
$$

where

$$
\left\langle P^{n} Q^{n}\right\rangle_{N} \triangleq \frac{1}{N} \sum_{i=1}^{N} P_{i}^{n} Q_{i}^{n}
$$

- Remark: u^{n} are random variables, too!

A new type of convergence

- Coupling issue

The errors e^{n} are random variables!

$$
\mathbb{E}\left\|e_{y}^{n+1}\right\|_{L_{y}^{2}}^{2}\left\langle\left(\hat{Q}^{n}\right)^{2}\right\rangle_{N} \neq \mathbb{E}\left\|e_{y}^{n+1}\right\|_{L_{y}^{2}}^{2} \mathbb{E}\left\langle\left(\hat{Q}^{n}\right)^{2}\right\rangle_{N}
$$

where \hat{Q}^{n} satisfies

$$
\hat{Q}_{i}^{n+1}=\hat{Q}_{i}^{n}-\frac{\hat{Q}_{i}^{n}}{2} \Delta t+d W_{i}^{n}
$$

- Large deviation estimate
after excluding a set \mathcal{A} of exponentially small probability.

A new type of convergence

- Coupling issue

The errors e^{n} are random variables!

$$
\mathbb{E}\left\|e_{y}^{n+1}\right\|_{L_{y}^{2}}^{2}\left\langle\left(\hat{Q}^{n}\right)^{2}\right\rangle_{N} \neq \mathbb{E}\left\|e_{y}^{n+1}\right\|_{L_{y}^{2}}^{2} \mathbb{E}\left\langle\left(\hat{Q}^{n}\right)^{2}\right\rangle_{N}
$$

where \hat{Q}^{n} satisfies

$$
\hat{Q}_{i}^{n+1}=\hat{Q}_{i}^{n}-\frac{\hat{Q}_{i}^{n}}{2} \Delta t+d W_{i}^{n} .
$$

- Large deviation estimate

$$
\Delta t\left\langle\left(\hat{Q}^{n}\right)^{2}\right\rangle_{N} \leq \frac{1}{2}
$$

after excluding a set \mathcal{A} of exponentially small probability.

- Mean square convergence after excluding a set of exponentially small probability

A new type of convergence

- Coupling issue

The errors e^{n} are random variables!

$$
\mathbb{E}\left\|e_{y}^{n+1}\right\|_{L_{y}^{2}}^{2}\left\langle\left(\hat{Q}^{n}\right)^{2}\right\rangle_{N} \neq \mathbb{E}\left\|e_{y}^{n+1}\right\|_{L_{y}^{2}}^{2} \mathbb{E}\left\langle\left(\hat{Q}^{n}\right)^{2}\right\rangle_{N}
$$

where \hat{Q}^{n} satisfies

$$
\hat{Q}_{i}^{n+1}=\hat{Q}_{i}^{n}-\frac{\hat{Q}_{i}^{n}}{2} \Delta t+d W_{i}^{n}
$$

- Large deviation estimate

$$
\Delta t\left\langle\left(\hat{Q}^{n}\right)^{2}\right\rangle_{N} \leq \frac{1}{2}
$$

after excluding a set \mathcal{A} of exponentially small probability.

- Mean square convergence after excluding a set of exponentially small probability

$$
\mathbb{E}\left(\left\|e^{n}\right\|_{L_{y}^{2}}^{2} \cdot \mathbf{1}_{\mathcal{A}^{c}}\right) \leq \Delta t^{2}+\frac{1}{N}
$$

BCF for Liquid Crystal Polymers

- SDE form for Doi-Edwards model(shear flow, 1D)

$$
\begin{aligned}
& \mathrm{d} \Theta_{t}=-\left(a\left(\Theta_{t}, \mathcal{L}\left(\Theta_{t}\right)\right)+\partial_{y} u \sin ^{2} \Theta_{t}\right) \mathrm{d} t+\mathrm{d} W_{t} \\
& \tau(y, t)=\mathbb{E}\left[\sin 2 \Theta_{t}+a\left(\Theta_{t}, \mathcal{L}\left(\Theta_{t}\right)\right) \cos ^{2} \Theta_{t}+\partial_{y} u \sin ^{2} 2 \Theta_{t}\right]
\end{aligned}
$$

where $a\left(\Theta_{t}, \mathcal{L}\left(\Theta_{t}\right)\right)=\int_{-\infty}^{+\infty} \sin 2\left(\Theta_{t}-\theta^{\prime}\right) \mathcal{L}\left(\Theta_{t}\right)\left(d \theta^{\prime}\right)$.

- Weakly interacting particle system after discretization.

BCF for Liquid Crystal Polymers

- SDE form for Doi-Edwards model(shear flow, 1D)

$$
\begin{aligned}
& \mathrm{d} \Theta_{t}=-\left(a\left(\Theta_{t}, \mathcal{L}\left(\Theta_{t}\right)\right)+\partial_{y} u \sin ^{2} \Theta_{t}\right) \mathrm{d} t+\mathrm{d} W_{t} \\
& \tau(y, t)=\mathbb{E}\left[\sin 2 \Theta_{t}+a\left(\Theta_{t}, \mathcal{L}\left(\Theta_{t}\right)\right) \cos ^{2} \Theta_{t}+\partial_{y} u \sin ^{2} 2 \Theta_{t}\right]
\end{aligned}
$$

where $a\left(\Theta_{t}, \mathcal{L}\left(\Theta_{t}\right)\right)=\int_{-\infty}^{+\infty} \sin 2\left(\Theta_{t}-\theta^{\prime}\right) \mathcal{L}\left(\Theta_{t}\right)\left(d \theta^{\prime}\right)$.

- Weakly interacting particle system after discretization.

$$
\mathrm{d} \Theta_{t}=-a\left(\Theta_{t}, \mathcal{L}\left(\Theta_{t}\right)\right) d t+\mathrm{d} W_{t}
$$

becomes

$$
\mathrm{d} \Theta_{t}^{i}=-\frac{1}{N} \sum_{j=1}^{N} \sin 2\left(\Theta_{t}^{i}-\Theta_{t}^{j}\right) d t+\mathrm{d} W_{t}^{i}
$$

$\left\{\Theta_{t}^{i}\right\}$ coupled each other!

Convergence analysis for Liquid Crystal Polymers

- Convergence result (without excluding the small set)

$$
\mathbb{E}\left|\mathbb{E} f\left(\Theta_{t}\right)-\frac{1}{N} \sum_{j=1}^{N} f\left(\Theta_{t}^{j}\right)\right|^{2} \leq \frac{C}{N}
$$

This mean square convergence is due to the boundedness of \sin function, which is quite special for this problem.

> Techniques (A.-S. Sznitman, LNM 1464 (1991)) Wasserstein metric for iterative convergence. Centering for mean square convergence.

Convergence analysis for Liquid Crystal Polymers

- Convergence result (without excluding the small set)

$$
\mathbb{E}\left|\mathbb{E} f\left(\Theta_{t}\right)-\frac{1}{N} \sum_{j=1}^{N} f\left(\Theta_{t}^{j}\right)\right|^{2} \leq \frac{C}{N}
$$

This mean square convergence is due to the boundedness of sin function, which is quite special for this problem.

- Techniques (A.-S. Sznitman, LNM 1464 (1991))

Wasserstein metric for iterative convergence.
Centering for mean square convergence.

High-D convergence analysis for dumbbell model

Define the error

$$
\boldsymbol{E}^{n}:=\boldsymbol{Q}^{n}-\hat{\boldsymbol{Q}}^{n}
$$

only with time discretization, then \boldsymbol{E}^{n} satisfies
$\frac{1}{\Delta t}\left(\boldsymbol{E}^{n+1}-\boldsymbol{E}^{n}\right)+\boldsymbol{u}^{n} \cdot \nabla \boldsymbol{E}^{n+1}+\boldsymbol{e}^{n} \cdot \nabla \hat{\boldsymbol{Q}}^{n+1}=\kappa^{n} \boldsymbol{E}^{n+1}+\nabla \boldsymbol{e}^{n} \hat{\boldsymbol{Q}}^{n+1}-\boldsymbol{E}^{n}$.

- Identity

$$
\int_{D} \boldsymbol{u}^{n} \cdot \nabla \boldsymbol{E}^{n+1} \cdot \boldsymbol{E}^{n+1} d \boldsymbol{x}=0
$$

- In order to estimate $\int_{D} e^{n} \cdot \nabla \hat{Q}^{n+1} \cdot E^{n+1} d x$, one needs

High-D convergence analysis for dumbbell model

Define the error

$$
\boldsymbol{E}^{n}:=\boldsymbol{Q}^{n}-\hat{\boldsymbol{Q}}^{n}
$$

only with time discretization, then \boldsymbol{E}^{n} satisfies
$\frac{1}{\Delta t}\left(\boldsymbol{E}^{n+1}-\boldsymbol{E}^{n}\right)+\boldsymbol{u}^{n} \cdot \nabla \boldsymbol{E}^{n+1}+\boldsymbol{e}^{n} \cdot \nabla \hat{\boldsymbol{Q}}^{n+1}=\kappa^{n} \boldsymbol{E}^{n+1}+\nabla \boldsymbol{e}^{n} \hat{\boldsymbol{Q}}^{n+1}-\boldsymbol{E}^{n}$.

- Identity

$$
\int_{D} \boldsymbol{u}^{n} \cdot \nabla \boldsymbol{E}^{n+1} \cdot \boldsymbol{E}^{n+1} d \boldsymbol{x}=0
$$

- In order to estimate $\int_{D} \boldsymbol{e}^{n} \cdot \nabla \hat{\boldsymbol{Q}}^{n+1} \cdot \boldsymbol{E}^{n+1} d \boldsymbol{x}$, one needs

$$
\left\|\left.\langle | \nabla \hat{\boldsymbol{Q}}^{n+1}\right|^{2}\right\rangle_{N} \|_{L^{\infty}} \preceq \text { Const. }
$$

Difficult! L^{2}-type estimate $\left\|\left.\langle | \nabla \hat{\boldsymbol{Q}}^{n+1}\right|^{2}\right\rangle_{N} \|_{L^{2}} \preceq$ Const. is easy.
But it can't be transfered back to L^{∞} norm.

Essential ingredient 1: Explicit solution for Q

- SPDE for \boldsymbol{Q}

$$
d \boldsymbol{Q}+\boldsymbol{u} \cdot \nabla \boldsymbol{Q}=(\kappa \boldsymbol{Q}-\boldsymbol{Q}) d t+d \boldsymbol{W}
$$

- Introduce flow map

and deformation tensor

Essential ingredient 1: Explicit solution for Q

- SPDE for \boldsymbol{Q}

$$
d \boldsymbol{Q}+\boldsymbol{u} \cdot \nabla \boldsymbol{Q}=(\kappa \boldsymbol{Q}-\boldsymbol{Q}) d t+d \boldsymbol{W}
$$

- Introduce flow map

$$
\frac{d \boldsymbol{x}(\alpha, t)}{d t}=\boldsymbol{u}(\boldsymbol{x}(\alpha, t), t), \quad \boldsymbol{x}(\alpha, 0)=\alpha .
$$

and deformation tensor

$$
F(\alpha, t)=\frac{\partial \boldsymbol{x}}{\partial \alpha}, \quad \text { i.e. } \quad F_{i j}=\frac{\partial x_{i}}{\partial \alpha_{j}}
$$

- Explicit solution in Lagrangian coordinates

Essential ingredient 1: Explicit solution for Q

- SPDE for \boldsymbol{Q}

$$
d \boldsymbol{Q}+\boldsymbol{u} \cdot \nabla \boldsymbol{Q}=(\kappa \boldsymbol{Q}-\boldsymbol{Q}) d t+d \boldsymbol{W}
$$

- Introduce flow map

$$
\frac{d \boldsymbol{x}(\alpha, t)}{d t}=\boldsymbol{u}(\boldsymbol{x}(\alpha, t), t), \quad \boldsymbol{x}(\alpha, 0)=\alpha .
$$

and deformation tensor

$$
F(\alpha, t)=\frac{\partial \boldsymbol{x}}{\partial \alpha}, \quad \text { i.e. } \quad F_{i j}=\frac{\partial x_{i}}{\partial \alpha_{j}}
$$

- Explicit solution in Lagrangian coordinates

$$
\boldsymbol{Q}(\alpha, t)=e^{-t} F(\alpha, t) \boldsymbol{Q}_{0}(\alpha)+F(\alpha, t) \cdot \int_{0}^{t} e^{s-t} F^{-1}(\alpha, s) \cdot d \boldsymbol{W}_{s}
$$

- Q is a Gaussian process with S.P.D. covariance matrix. This allows large
deviation estimates.

Essential ingredient 1: Explicit solution for Q

- SPDE for \boldsymbol{Q}

$$
d \boldsymbol{Q}+\boldsymbol{u} \cdot \nabla \boldsymbol{Q}=(\kappa \boldsymbol{Q}-\boldsymbol{Q}) d t+d \boldsymbol{W}
$$

- Introduce flow map

$$
\frac{d \boldsymbol{x}(\alpha, t)}{d t}=\boldsymbol{u}(\boldsymbol{x}(\alpha, t), t), \quad \boldsymbol{x}(\alpha, 0)=\alpha .
$$

and deformation tensor

$$
F(\alpha, t)=\frac{\partial \boldsymbol{x}}{\partial \alpha}, \quad \text { i.e. } \quad F_{i j}=\frac{\partial x_{i}}{\partial \alpha_{j}}
$$

- Explicit solution in Lagrangian coordinates

$$
\boldsymbol{Q}(\alpha, t)=e^{-t} F(\alpha, t) \boldsymbol{Q}_{0}(\alpha)+F(\alpha, t) \cdot \int_{0}^{t} e^{s-t} F^{-1}(\alpha, s) \cdot d \boldsymbol{W}_{s}
$$

- \boldsymbol{Q} is a Gaussian process with S.P.D. covariance matrix. This allows large deviation estimates.

Essential ingredient 2: Strang's trick for estimating L_{h}^{∞} norm

- Inverse inequality under spatial discretization

$$
\left\|\boldsymbol{u}^{n}\right\|_{L_{h}^{\infty}} \leq h^{-\frac{d}{2}}\left\|\boldsymbol{u}^{n}\right\|_{L_{h}^{2}}, \quad\left\|\tilde{\boldsymbol{Q}}^{n}\right\|_{L_{h}^{\infty}} \leq h^{-\frac{d}{2}}\left\|\tilde{\boldsymbol{Q}}^{n}\right\|_{L_{h}^{2}}
$$

- Continuation technique

If $p>\frac{d}{2},\left\|\boldsymbol{u}_{h}^{n}\right\|_{L_{h}^{\infty}}$ is bounded.

Essential ingredient 2: Strang's trick for estimating L_{h}^{∞} norm

- Inverse inequality under spatial discretization

$$
\left\|\boldsymbol{u}^{n}\right\|_{L_{h}^{\infty}} \leq h^{-\frac{d}{2}}\left\|\boldsymbol{u}^{n}\right\|_{L_{h}^{2}}, \quad\left\|\tilde{\boldsymbol{Q}}^{n}\right\|_{L_{h}^{\infty}} \leq h^{-\frac{d}{2}}\left\|\tilde{\boldsymbol{Q}}^{n}\right\|_{L_{h}^{2}}
$$

- Continuation technique

$$
\begin{aligned}
\left\|\boldsymbol{u}_{h}^{n}\right\|_{L_{h}^{\infty}} & \leq\left\|\boldsymbol{u}_{h}^{n}-\boldsymbol{u}^{n}\right\|_{L_{h}^{\infty}}+\left\|\boldsymbol{u}^{n}\right\|_{L_{h}^{\infty}} \\
& \leq\left\|\boldsymbol{e}^{n}\right\|_{L_{h}^{\infty}}+\|\boldsymbol{u}\|_{C^{0}(D \times[0, T])} \\
& \leq h^{-\frac{d}{2}}\left\|\boldsymbol{e}^{n}\right\|_{L_{h}^{2}}+\|\boldsymbol{u}\|_{C^{0}(D \times[0, T])} \\
& \leq C h^{p-\frac{d}{2}}+\|\boldsymbol{u}\|_{C^{0}(D \times[0, T])}
\end{aligned}
$$

If $p>\frac{d}{2},\left\|\boldsymbol{u}_{h}^{n}\right\|_{L_{h}^{\infty}}$ is bounded.

A stronger convergence result for high dimensional Hookean dumbbell model

- Final convergence result

$$
\left\|\boldsymbol{e}^{\cdot, n+1}\right\|_{L_{h}^{2}}^{2}+\left\langle\left\|\boldsymbol{E}^{\cdot, \cdot, n+1}\right\|_{L_{h}^{2}}^{2}\right\rangle_{N} \preceq C\left(\delta t^{2}+h^{4}+\frac{1}{N^{1-\epsilon}}\right)
$$

and

$$
\left\|\nabla_{h} \boldsymbol{e}^{\cdot, n}\right\|_{L_{\tau}^{2} L_{h}^{2}}^{2} \preceq C\left(\delta t^{2}+h^{4}+\frac{1}{N^{1-\epsilon}}\right) .
$$

where \preceq means \leq after excluding a set of exponentially small probability.

- This type of convergence is considered by D.-G. Long (1988) for analysis of random vortex method.

A stronger convergence result for high dimensional Hookean dumbbell model

- Final convergence result

$$
\left\|\boldsymbol{e}^{\cdot, n+1}\right\|_{L_{h}^{2}}^{2}+\left\langle\left\|\boldsymbol{E}^{\cdot, \cdot, n+1}\right\|_{L_{h}^{2}}^{2}\right\rangle_{N} \preceq C\left(\delta t^{2}+h^{4}+\frac{1}{N^{1-\epsilon}}\right)
$$

and

$$
\left\|\nabla_{h} \boldsymbol{e}^{\cdot, n}\right\|_{L_{\tau}^{2} L_{h}^{2}}^{2} \preceq C\left(\delta t^{2}+h^{4}+\frac{1}{N^{1-\epsilon}}\right) .
$$

where \preceq means \leq after excluding a set of exponentially small probability.

- This type of convergence is considered by D.-G. Long (1988) for analysis of random vortex method.

Nonlinear dumbbells: shear flow (decoupled case)

- Difficulties: non-Lipschitz property of the force \boldsymbol{F}

$$
d \boldsymbol{Q}_{t}=\left(\kappa \cdot \boldsymbol{Q}_{t}-\boldsymbol{F}(\boldsymbol{Q})\right) d t+d \boldsymbol{W}_{t}
$$

- One sided Lipschitz condition!
- For FENE dumbbell model (implicit method)

Nonlinear dumbbells: shear flow (decoupled case)

- Difficulties: non-Lipschitz property of the force \boldsymbol{F}

$$
d \boldsymbol{Q}_{t}=\left(\kappa \cdot \boldsymbol{Q}_{t}-\boldsymbol{F}(\boldsymbol{Q})\right) d t+d \boldsymbol{W}_{t}
$$

- One sided Lipschitz condition!

$$
(\boldsymbol{F}(\boldsymbol{a})-\boldsymbol{F}(\boldsymbol{b}), \boldsymbol{a}-\boldsymbol{b}) \geq 0 \quad \forall \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{m} .
$$

- For FENE dumbbell model (implicit method)

Nonlinear dumbbells: shear flow (decoupled case)

- Difficulties: non-Lipschitz property of the force \boldsymbol{F}

$$
d \boldsymbol{Q}_{t}=\left(\kappa \cdot \boldsymbol{Q}_{t}-\boldsymbol{F}(\boldsymbol{Q})\right) d t+d \boldsymbol{W}_{t}
$$

- One sided Lipschitz condition!

$$
(\boldsymbol{F}(\boldsymbol{a})-\boldsymbol{F}(\boldsymbol{b}), \boldsymbol{a}-\boldsymbol{b}) \geq 0 \quad \forall \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{m} .
$$

- For FENE dumbbell model (implicit method)

$$
\begin{aligned}
P^{n+1} & =P^{n}+\left(u_{y}\left(t_{n+1}\right) Q^{n}-\frac{1}{2} \frac{P^{n+1}}{1-\left(Q^{n+1}\right)^{2} / b}\right) \Delta t+d V^{n} \\
Q^{n+1} & =Q^{n}-\frac{1}{2} \frac{Q^{n+1}}{1-\left(Q^{n+1}\right)^{2} / b} \Delta t+d W^{n}
\end{aligned}
$$

A cubic equation for Q^{n+1}, explicit unique solution in $[0, \sqrt{b})$.

- Convergence for FENE is OK now.

Nonlinear dumbbells: shear flow (decoupled case)

- Difficulties: non-Lipschitz property of the force \boldsymbol{F}

$$
d \boldsymbol{Q}_{t}=\left(\kappa \cdot \boldsymbol{Q}_{t}-\boldsymbol{F}(\boldsymbol{Q})\right) d t+d \boldsymbol{W}_{t}
$$

- One sided Lipschitz condition!

$$
(\boldsymbol{F}(\boldsymbol{a})-\boldsymbol{F}(\boldsymbol{b}), \boldsymbol{a}-\boldsymbol{b}) \geq 0 \quad \forall \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{m} .
$$

- For FENE dumbbell model (implicit method)

$$
\begin{aligned}
P^{n+1} & =P^{n}+\left(u_{y}\left(t_{n+1}\right) Q^{n}-\frac{1}{2} \frac{P^{n+1}}{1-\left(Q^{n+1}\right)^{2} / b}\right) \Delta t+d V^{n} \\
Q^{n+1} & =Q^{n}-\frac{1}{2} \frac{Q^{n+1}}{1-\left(Q^{n+1}\right)^{2} / b} \Delta t+d W^{n}
\end{aligned}
$$

A cubic equation for Q^{n+1}, explicit unique solution in $[0, \sqrt{b})$.

- Convergence for FENE is OK now.

Nonlinear dumbbells: shear flow (decoupled case)

- For general nonlinear force, implicit equations are difficult to be solved. How to construct explicit schemes?
- Direct discretization

Difficult to obtain the L^{p} bound of Q^{n}, which is inevitable for analysis!

- Naw scheme

Nonlinear dumbbells: shear flow (decoupled case)

- For general nonlinear force, implicit equations are difficult to be solved. How to construct explicit schemes?
- Direct discretization

$$
\begin{aligned}
P^{n+1} & =P^{n}-\Delta t \gamma\left(\left|\boldsymbol{Q}^{n}\right|^{2}\right) P^{n}+u_{y}\left(t_{n+1}\right) Q^{n} \Delta t+d V^{n} \\
Q^{n+1} & =Q^{n}-\Delta t \gamma\left(\left|\boldsymbol{Q}^{n}\right|^{2}\right) Q^{n}+d W^{n}
\end{aligned}
$$

Difficult to obtain the L^{p} bound of Q^{n}, which is inevitable for analysis!

- New scheme

Nonlinear dumbbells: shear flow (decoupled case)

- For general nonlinear force, implicit equations are difficult to be solved. How to construct explicit schemes?
- Direct discretization

$$
\begin{aligned}
P^{n+1} & =P^{n}-\Delta t \gamma\left(\left|\boldsymbol{Q}^{n}\right|^{2}\right) P^{n}+u_{y}\left(t_{n+1}\right) Q^{n} \Delta t+d V^{n} \\
Q^{n+1} & =Q^{n}-\Delta t \gamma\left(\left|\boldsymbol{Q}^{n}\right|^{2}\right) Q^{n}+d W^{n}
\end{aligned}
$$

Difficult to obtain the L^{p} bound of Q^{n}, which is inevitable for analysis!

- New scheme

$$
\begin{aligned}
P^{n+1} & =\frac{1}{1+\Delta t \gamma\left(\left|\boldsymbol{Q}^{n}\right|^{2}\right)} P^{n}+u_{y}\left(t_{n+1}\right) Q^{n} \Delta t+d V^{n} \\
Q^{n+1} & =\frac{1}{1+\Delta t \gamma\left(\left|\boldsymbol{Q}^{n}\right|^{2}\right)} Q^{n}+d W^{n}
\end{aligned}
$$

Convergence is OK!

Nonlinear dumbbells: shear flow (coupled case)

Not available now!

Reference: review paper by Li-Zhang, Comm. Math. Sci. 5 (2007), 1-51.

Thank you!

