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Global existence of solutions

Existence proofs for initial value problems have two parts:

1. An argument for local existence, typically based on proving convergence
of some approximation scheme.

2. A priori estimates showing solutions do not blow up and can be continued.

Example: Navier-Stokes equations

Assume, for simplicity, periodic boundary conditions.

p(vi+ (v-V)v) =nAv — Vp,

divv = 0.

If we multiply by v and integrate we find

d 2 2
pV dx = / nVv|< dx.



This is enough to guarantee global existence (but not uniqueness) of a weak solution.
In two dimensions, we can do more. Take the curl of the equation of motion, and

let ® be the vorticity. We find

plwr + (V- V)w) = nAw,

and hence

[ 224 :—/ Vo2 dx.
it Jo 2P 4% o NVewl” dx

This suffices to prove global existence of smooth solutions.



How about non-Newtonian fluids?

_CAPTAIN RINTV = stik

Win an arquement against Prof
Plurng and he'd prove you didn't exist.



Global existence results in viscoelastic fluids
are restricted to simple flows

Simple flows, Palouse Falls, Washington - Extensive sheetflows of the Columbia Rrver
floodbasalt province are exposed in southeastern Washington at Palouse falls. Photo by
Vic Camp.



Viscoelastic fluids

Only one-dimensional results for global existence (other than for small data).

We shall consider parallel shear flows (reduces to the heat equation for Newtonian
case).

Governing equations:
put = Ty + NUyy + f(y7 t)a

O T
T W)’

T =

Initial conditions for u and T, Dirichlet boundary conditions for u.



A local existence result is easy, for instance by using an iterative construction like
the following:

1
pul Tl = 77 o 4 f(y, 1),

T? 1 — G(T”,uz_l_l).

Global continuation (of a solution as smooth as the data will allow) is possible if
we can get a priori bounds on the L' norms of u, and T. This is possible if we make
certain assumptions that are satisfied for a number of constitutive laws.

Positive definiteness conditions for the stress tensor play an essential role in
the arguments.



Assumptions sufficient for global existence

(A1) There is p<1 such that
|G(T, uy)| < C(Juy| + [T)".
(A2) There is q<1 and v<1 such that every solution of
T = G(T, uy)

satisfies the bounds

7| < C(1+ max |uy(s)|?),
s€[0,¢]

o] + v < C(1+ max_ |uy(s)]),

s€[0,t]

where C depends only on t and the initial data.



White-Metzner model

A
Tt = Uy — T,
’ p(uy)
A
o = 2TUy — o,
’ p(uy)
Y =0,

A>0, p(uy) >0, uluy) ~ |uy|™?

for large |uy|, O <y < 1.

Assumption (A2) holds with g=1-y and v=2-2y.



Phan-Thien Tanner model

Ot = 2TUy — A0 — KO~

2

Tt = —AT — KOT + UUy,

We can derive that

d
(o —2) =

This implies positive definiteness:
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It follows that

d
a(T)Q < —2A12 — 2k + 2UTUy.

This implies (A2) with g=1/3.



Johnson-Segalman model

o = —Ao—+ (14 a)Tuy,

a 1
no= A (o) + 2 o)+ wuy,
Yy = =AM+ (a— 1)Tuy.

Here A,u>0 and -1<a<l1. It is convenient to introduce new variables:

Y = (1-a)o+(1+a)y, Z = 5(o+i)+5 (o).

The equations transform to Y, +A Y=0 and

~A\Z + (a® — 1) Tuy.

T

z



With

1 1
®=_2°+uZ+ _(1-a*)r?

we find

D = —2AD + \uZ.

This leads to a priori bounds on t and Z.

Note:

o+ u/a

T

T

Y+ p/a




Giesekus model

Mo — k(o? 4+ %) + 2T Uy,

ot —

Tt = —AT — k(o +Y)T+ (p+ P)uy,
Y = =M — k(1% 4 47).

Here A,u,k>0, KU<A.

We set

X = rp(o — ) + w(op — 72) + M,
and find

xt = —(A+ k(o +¥)x.

We shall now assume y=0.



Next, consider

d= o)+ p) —7°.

It can be shown that ¢ > 0, d > 0 if this is the case initially, since

d? K2
di = d(2X + k(o — p)) + po(A — kp).
A — KU

Moreover,

_ (A= rp)(uo —7°)
A — KU+ ko

d

Hence 12 < uc. Moreover, from y = 0 and ¢ > 0 it follows that y>-p.



Now consider the equation

7= =t — k(o + V)72 + (4 P)uy.

We have ¢ > t?/u and 0 > y > -u. We can conclude (A2) with g=1/3.



Nonlinear dumbbell models

These do not fit into the preceding framework, but for creeping flow a priori bounds
can be found by other means.

Creeping flow:

An immediate consequence is

1
luy (y,t)| < C max_|7(y,t)|,
M y€|[0,L]

where the constant depends only on the boundary conditions.



Constitutive law:

C; = (Vu)C+ C(VW)! +~I—-6f(trC)C,
T = f(trC)C.

Here C is called a configuration tensor. y and o are positive constants. For the
function f, we assume it is monotone and one of the following:

fle) ~ct, fl(e) ~ L, for ¢ — o0, p > 0;

fle) ~ (L—c)™", f'(c) ~ (L—c)™#~1, forc — L, p > 0.



In shear flow, we have

A D O
C=|D E 0],
O O FE

Ay = 2Duy+v—-90f(A+2FE)A,
Dy = Euy—8f(A+2E)D,
E, = ~—6f(A+2E)E.



For physically acceptable initial data, C is positive definite, and E < y/(0 f(0)).
We have

(A42E); = 2Duy + 37— 6f(A+2E)(A+ 2E).

Now let

Q= max (A+2F), R= max _|D|,
ye[0,L] y€[0,L]

S = max_|uyl.
y€l0,L]



We find

Q: <2RS + 37— 46f(Q)Q,
R < /Qv/(6£(0)),

o T@R
n

S <

By combining these, we obtain

27y
Q1 < FQQ( 575y~ D +37+ C\/Q.

This yields an a priori bound for Q if




Global stability of the rest state
Assume a constitutive law of the form

Make the following assumptions:

1. G(0)=0 and polynomial growth of G and its derivatives.
2. A priori estimates which imply (for some p>=1)

lim |{|T'||, = O.
lim ||
3. Assumption (A2) for global existence as before.

Then ||T—|—77Uy||oo tends to zero.



PTT model

Ot = 2TUy — A0 — 1{0'2,

Tt = —AT — KOT + UUy,
pUt = Ty + NUyy.
This yields (assuming homogeneous Dirichlet conditions for u)
d 7 2 z
— — 14+ —)d
= [o+ 421+ ) dy

= = [0+ k0 + A+ 5o)72 + (2 + Wl dy.

Consequenty  ||o||1 + ||7]|]2 — O.

Note that the a priori information that o is positive is essential here!



Similar arguments work for Johnson-Segalman and Giesekus. For the nonlinear
dumbbell model and large enough n, we can prove global stability of the rest
state by exploiting a refinement of the positive definiteness condition. Recall the
set of equations

=
|

2Duy +~v—0f(A+2E)A,
Euy — 6f(A+ 2E)D,
v —6f(A+ 2E)E.

SRR
[

We derive

© (A=B)B-D?) = ~25f(A+2B) (A~ B) B-D?)+~(A-E).

Positive definiteness of the conformation tensor implies that A,E and AE-D? are
nonnegative. We find the stronger condition that A-E and (A-E)E-D? are nonnegative.



Questions?




