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Global existence of solutions
Existence proofs for initial value problems have two parts:
1. An argument for local existence, typically based on proving convergence 

of some approximation scheme.
2. A priori estimates showing solutions do not blow up and can be continued.

Example: Navier-Stokes equations

Assume, for simplicity, periodic boundary conditions.

If we multiply by  v and integrate we find



This is enough to guarantee global existence (but not uniqueness) of a weak solution.
In two dimensions, we can do more. Take the curl of the equation of motion, and
let ω be the vorticity. We find

and hence

This suffices to prove global existence of smooth solutions.



How about non-Newtonian fluids?



Global existence results in viscoelastic fluids
are restricted to simple flows



Viscoelastic fluids

Only one-dimensional results for global existence (other than for small data).
We shall consider parallel shear flows (reduces to the heat equation for Newtonian
case).

Governing equations:

Initial conditions for u and T, Dirichlet boundary conditions for u.



A local existence result is easy, for instance by using an iterative construction like
the following:

Global continuation (of a solution as smooth as the data will allow) is possible if
we can get a priori bounds on the L1 norms of uy and T. This is possible if we make
certain assumptions that are satisfied for a number of constitutive laws.

Positive definiteness conditions for the stress tensor play an essential role in
the arguments.



Assumptions sufficient for global existence

(A1) There is p<1 such that

(A2) There is q<1 and ν<1 such that every solution of

satisfies the bounds

where C depends only on t and the initial data.



White-Metzner model

Assumption (A2) holds with q=1-γ and ν=2-2γ.



Phan-Thien Tanner model

We can derive that

This implies positive definiteness:



It follows that

This implies (A2) with q=1/3.



Johnson-Segalman model

Here λ,μ>0 and -1<a<1. It is convenient to introduce new variables:

The equations transform to Yt+λ Y=0 and 



With

we find

This leads to a priori bounds on τ and Z.

Note:



Giesekus model

Here λ,μ,κ>0, κμ<λ.
We set

and find

We shall now assume χ=0.



Next, consider

It can be shown that σ ≥ 0, d ≥ 0 if this is the case initially, since

Moreover,

Hence τ2 ≤ μσ. Moreover, from χ = 0 and σ ≥ 0 it follows that ψ>-μ.



Now consider the equation

We have σ ≥ τ2/μ and 0 ≥ ψ > -μ. We can conclude (A2) with q=1/3.



Nonlinear dumbbell models

These do not fit into the preceding framework, but for creeping flow a priori bounds
can be found by other means.

Creeping flow:

An immediate consequence is 

where the constant depends only on the boundary conditions.



Constitutive law:

Here C is called a configuration tensor. γ and δ are positive constants. For the
function f, we assume it is monotone and one of the following:



In shear flow, we have



For physically acceptable initial data, C is positive definite, and E < γ/(δ f(0)).
We have

Now let



We find

By combining these, we obtain

This yields an a priori bound for Q if 



Global stability of the rest state

Assume a constitutive law of the form

Make the following assumptions:

1. G(0)=0 and polynomial growth of G and its derivatives.
2. A priori estimates which imply (for some p>=1)

3. Assumption (A2) for global existence as before.

Then                                       tends to zero.



PTT model

This yields (assuming homogeneous Dirichlet conditions for u)

Consequently

Note that the a priori information that σ is positive is essential here!



Similar arguments work for Johnson-Segalman and Giesekus. For the nonlinear
dumbbell model and large enough η, we can prove global stability of the rest
state by exploiting a refinement of the positive definiteness condition. Recall the
set of equations

We derive

Positive definiteness of the conformation tensor implies that A,E and AE-D2 are
nonnegative. We find the stronger condition that A-E and (A-E)E-D2 are nonnegative.



Questions?


