Dynamical Modeling Based on Energy Dissipation

Pingwen Zhang
School of Mathematical Sciences and CCSE, Peking Univ., China

Joint work with Haijun Yu, Guanghua Ji, Han Wang, Kun Li

April 18, 2007




Dynamical modeling based on energy dissipation

@ The elastic stress can be derived from general energy using
virtue work principle

@ The viscous stress can be derived by understanding dissipation
@ The kinematics

The following is our some related works:

@ Dongzhuo Zhou, Pingwen Zhang and Weinan E, Modified
models of polymer phase separation PHYSICAL REVIEW E
73 (6): Art. No. 061801 Part 1 JUN (2006)

@ Dan Hu, Pingwen Zhang and Weinan E, The continuum
theory of a moving membrane, PHYSICAL REVIEW E (2007)&




Dynamical modeling based on energy dissipation

Bottom up
@ The microscopic dynamical model is given
@ We hope to get the macroscopic dynamical model

Today, | will focus on
The Thermodynamic Closure Approximation of Kinetic Theories

for Complex Fluids
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Modeling of Complex Fluids

@ Continuity theories
e Oldroyd-B model, Leslie-Ericksen theory etc
o relatively simple and efficient in numerical simulation
e only accurate in some special cases
@ Kinetic theories or molecular theories
o FENE model, the Doi kinetic theory etc
e more accurate than continuity theories
e computing is expensive in nonhomogeneous system
© Tensor models
o describe local structure by an order tensor
e a compromise between accuracy and efficiency
e grab microstructure while serving as constitutive equation




Two approaches to tensor models

© Landau theory
Define a phenomenal free energy in terms of order parameter or
order tensor. For example, the Landau-de Gennes theory for
LCPs:
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Then the dynamics of S can be written formally as
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Two approaches to tensor models

@ Reduced from kinetic theory by closure approximation
e the Doi theory for LCPs

af 1
= DeR (R4 FRU) =R - (m x - mf) (1)

U is Maier-Saupe potential
Ulm,t) = UO/\m x m'|2f(m’, t)dm’

multiple mm on the both sides of (1) and integrate, one get

M 2
%:_E[(3M—I)+2U0(M~M—M:Q)

where M = (mm), Q = (mmmm).




Two approaches to tensor models

o FENE model
df 2
where V is FENE potential
HQZ q2
Vig) = ——21In(1- =5
the stress introduced by polymer is
Haqq
¢ =(qVq4(Inf + V) = -1 + (———=
(@Vallnf + V) =1+ (5 5 a)

multiple gqq on the both sides of (3) and integrate, one get

dm 4
k- M+M-k——-7°¢
ar K + K £T



What'’s the differences between two approaches?

Landau theory is phenomenal, ignore some microscopic
configuration entropy

Landau theory ensure energy dissipation in isothermal system

the second approach need closure approximation, but give
more credible results

not all closure approximations ensure energy dissipation




Choice of closure approximations

Several closures were introduced in the passed thirty years
@ quadratic closure (Doi 1981): Q = MM
@ HL1, HL2 closure approximation (Hinch, Leal 1976)
@ Bingham closure approximation (Chaubal and Leal 1998)

1
QR = /mmmmZ exp(B : mm)dm,
1
where /mmZ exp(B : mm) = M.

e FENE model: FENE-P (Perterlin 1966), FENE-L (LieLens et
al 1999) etc

@ quasi-equilibrium closure approximation ( llg et al 2002, 2003}

Which one is better ?



Criterions of good closure approximations

We present four criterions of good closure approximations
© non-negative CDF f >0
@ energy dissipation in isothermal system
ds d
T —

1

and consistent with that of exact kinetic theory
© good accuracy of approximation

© low computational expense




Quasi-equilibrium closure approximation (QEA)

Background

Quasi-equilibrium approximation is a basic principle of statistical
physics.
@ The very first use of the entropy maximization dates back

Gibbs' classical work: Elementary Principles of Statistical
Mechanics (Dover, 1960).

@ The use of the quasi-equilibrium to reduce the description of
dissipative system can be traced to the works of Grad on the
Boltzmann equation (1949).

@ QEA was employed in closure approximation of kinetic theory
for flexible and rod-like polymer dynamics by llg et al.

P. lig, I. V. Karlin, H.C. C")ttinger, Canonical distribution functions in polymer
dynamics. (). Dilute solutions of flexible polymers, Physica A 315 (2002)

P. lig, 1.V. Karlin, M. Krdger, H.C. éttinger, Canonical distribution functiohs
polymer dynamics. (I1). Liquid-crystalline polymers, Physica A 319 (2003)



Quasi-equilibrium closure approximation (QEA)

Consider a system with free energy
1
Alf] :/fln F+ 5 Up(m)f + V(m)fdm

Ur is mean-field potential and V is external potential. Then the
dynamics of the system given by

o = VnlD(m) Vo, = A, @

The energy dissipation is

dA[f] A df,
ar - Grad =




Quasi-equilibrium closure approximation (QEA)

One can get the dynamics of macro-variables S; = [ s;(m)f(m)dm
from equation (4)

= [smvIom) - Viddm, i =10 ()

The right sides of (5) usually involves more macro-variables, often
are higher order term, How to make it closed?

A basic idea is to close it without introducing more information on
distribution function. Thus the higher order macro-variables are
ensembled by the most probable distributions, which are obtained
by taking maximum entropy or minimum of free energy

min  A[f]
st /s,-(m)f(m)dm _S,i=1,....n.




Quasi-equilibrium closure approximation (QEA)

By the method of Lagrange multipliers, we get
=Inf + Us(m) + V(m Z)\s,(m
Then the quasi-equilibrium distribution reads
f=exp ( — V(m) — Us(m) + zn:)\,-s,-(m)>.
i=1

Suppose the relationship of Ur(m) and f are given by

Uf(m) = Z S;A,-js,'(m),

where A is a symmetric matrix.




Quasi-equilibrium closure approximation (QEA)

fs(m) = exp ( —V(m)— Z SiAjisi(m) + Z A,-s,-(m)),

where/ i(m)fs(m)dm=3S5;, i=1,...,n.

Define the macroscopic free energy by A[S] = A[fs], then

A[S]
as;

= A

And the energy dissipation hold for reduced equation (5)

CdAIS] = QAS]dS;
dt - 9S. dr Z)‘ si(m

]

- _(Z Xisi(m), VD(m)V )| r=¢ = (Vi, D(m

dt |f fs
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FENE-QE model

Given second-order moment M, we take the QE distribution

1

fu(a) = - exp(~V(a)) exp(R : qq)

as the reference CDF to estimate polymer stress

= (qVqu)=R-M+M-R

Then the closed equation reads

dm

=R MM K—E(R M+ M-R), ©)

where R are determined by /qq exp(—V)exp(R : qq)dq = M. :




FENE-QE model

Equation (6) together with incompressible Navier-Stokes equation

du e 1
EJer = V.1 ‘f‘%

V-u = 0.

Au

compose a well-defined system. The energy dissipation of the
system reads

ds d 1
T— = ——| [ zp? AM
dr dt[/92pl/ dx+ Al ]]

1 8

Vu2dx+/TrR-M-Rdx
/QRe| Pax+ [ 2T )
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Implementation of FENE-QE

Calculate R from M is equal to solving a system of the non-linear
equations. Note: Z also depends on R.

1 q HQ3/2
M = G(R)Z/qq [1—()2] exp{R : qq}dq
Z Qo
Newtonian iteration:
Roi1 = Ry — VG(R)G(R,), n=0,1,2,--- (7)

Difficulties
@ Numerical integration of 2- or 3- dimensional variables.

@ Il posed function to be integrated, when index HQ§/2 is
small and R is big.




Implementation of FENE-QE

Strategy of llg et al

By Legendre transform, the independent variables are changed

from M to R IR Y
— =(Q—-MM)"t. —.
dt (@ ) dt

llg et al proposed a first-order integration scheme for this equation.
It need to evaluate @ and M in each time step.

The computing cost is still expensive for nonhomogeneous system
simulation.




FENE-QE-PLA

Our choice: piecewise linear approximation (PLA) to G~!

M and R can be diagonalized at the same time. So we only
consider the case when both M and R are diagonal matrices.

© Generate a grid on the range of G.

@ Calculate the value of G™! at each grid point by Newtonian
iteration.

© Given any value of M, calculate G~1(M) by linear
interpolation of four neighboring grid points




FENE-QE-PLA

Grid generation

@ one-dimensional case
First divide the domain of G(R) into an uniform gird
{Ro, R1,--- , Rn}, then evaluate every G(R;). The series
{G(Ro), G(R1), -+, G(Rnh)} gives a grid on the range of
G(R).
@ two-dimensional case
Tensor product of 1-dimensional grid. The jjt" grid point is
{G(Ri), G(R;)}
Rectangular grids (not necessarily uniform) are usually better than
non-rectangular grids. Furthermore, it is easy to carry out bisect
search method on rectangular grids.




Numerical results

Numerical comparison of three second-order moment closed FENE
models

e FENE-P (Bird et al 1987)

R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamics of
Polymeric Liquids, Vol. 2: Kinetic Theory, Wiley, New York, 2nd edn., 1987.

o FENE-QE (lig et al 2002)
o FENE-QE-PLA
o FENE-YDL

P. Yu, Q. Du and C. Liu, From micro to macro dynamics via a new closure
approximation to the FENE model of polymeric fluids, SIAM J. Multiscale
Model. Simul., 3 (2005) 895-917.




Numerical results— steady shear flow

steady shear flow

scheme central difference
fourth-order explicit Runge-Kutta

parameters u = (ky,0), £ =40, H=100 and Qy =1




Numerical results— steady shear flow
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Figure: Comparison of the contour plots of the CDFs at k = 3.




Numerical results— steady shear flow
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Numerical results— steady shear flow

FENE-P

FENE-YDL

FENE-QE

FENE-QE-PLA

N =

O O WX

[ NSy

1.10 x 1072
1.37 x 1072
2.21 x 1072
3.49 x 102
6.99 x 1072
9.97 x 102

4.02 x 1073
3.68 x 1072
1.38 x 1071
2.72 x 101
5.45 x 101
7.40 x 101

4.07 x 1074
9.45 x 10~*
4.43 x 1073
1.34 x 102
5.73 x 1072
1.20 x 1071

4.17 x 1074
9.07 x 10~*
4.24 x 1073
1.29 x 1072
5.65 x 102
1.19 x 1071

Table: L! Norm of Error of CDFs




Numerical results— steady shear flow
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Figure: Comparison of the Normal Stress Difference




Numerical results— steady shear flow

x | FENE-P FENE-YDL FENE-QE  FENE-QE-PLA
1 [1.10x103 2.08x10°% 723x10°% 3.76x10°°
3 11.03x1072 1.96x107% 266 x107°> 257 x10~*
6 | 479x 1072 3.71x1073 6.31x10~* 1.05x 1073
9 | 1.28x107Y 223x1072 532x10"3 4.65x 103
15 [ 478 x 1071 232x 107! 6.68x 1072 6.57 x 1072
20 [ 1.00 x 10° 893 x 107! 246 x 107! 231 x 107!

Table: Error of the Normal Stress Difference compared to Fokker-Planck
equation




Shear Stress

Numerical results— steady shear flow
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Figure: Comparison of the shear stress.




Numerical results— steady shear flow

FENE-P

FENE-YDL

FENE-QE

FENE-QE-PLA

N =

O O WX

o o

1.90 x 1073
6.02 x 1073
1.41 x 1072
2.54 x 1072
5.86 x 102
9.62 x 102

1.32 x 10°°
4.35 x 107*
412 x 1073
1.69 x 102
1.13 x 1071
3.52 x 101

1.90 x 10°°
7.13 x 10
2.17 x 10~*
1.18 x 1073
9.13 x 103
2.72 x 1072

1.35 x 10°°
7.43 x 107°
3.66 x 10~*
7.67 x 1074
8.46 x 1073
2.10 x 102

Table: Error of the Shear Stress compared to Fokker-Planck equation




Internal Elastic Energy

Numerical results— steady shear flow
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Figure: Comparison of the Elastic Energy




Numerical results— steady shear flow

FENE-P

FENE-YDL

FENE-QE

FENE-QE-PLA

N =

O O WX

o o

2.11 x 1072
3.03 x 102
6.72 x 102
1.45 x 1071
4.47 x 1071
6.69 x 101

0.85 x 1073
1.20 x 102
2.16 x 102
4,58 x 1072
2.04 x 101
5.85 x 101

1.30 x 10°°
2.51 x 107°
3.92 x 10~*
3.23 x 1073
3.96 x 102
1.41 x 1071

1.20 x 107°
2.74 x 107°
8.57 x 10~°
1.81 x 1073
3.88 x 1072
1.33 x 1071

Table: Error of the elastic energy compared to Fokker-Planck equation




Numerical results— elongational flow

elongational flow

u= ("QX7 —KZY)




Numerical results— elongational flow
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Numerical results— elongational flow
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Numerical results— elongational flow
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Numerical results— elongational flow

FENE-P

FENE-YDL

FENE-QE

FENE-QE-PLA

O ~NOOT P~ WDN B+

1.21 x 1072
1.75 x 102
3.22 x 1072
7.55 x 1072
1.99 x 101
5.25 x 101
1.01 x 10°

1.32 x 10°

1.64 x 1072
7.39 x 102
1.88 x 1071
3.83 x 101
6.62 x 101
9.93 x 101
1.46 x 10°

1.74 x 10°

8.55 x 10~*
9.00 x 10~*
0.83 x 10~*
1.09 x 1073
1.25 x 1073
1.42 x 1073
3.56 x 103
2.44 x 1073

8.55 x 10~
9.00 x 10~
9.83 x 107*
1.09 x 1073
1.23 x 1073
1.42 x 1073
1.73x 1073
2.44 x 1073

Table: Error of L1 norm of the CDFs




Numerical results— elongational flow
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Figure: Comparison of the Normal Stress Difference




Numerical results— elongational flow

% | FENE-P FENE-YDL FENE-QE FENE-QE-PLA
1][925%x103 238x10*% 333x10> 333x10°°
2332x1072 257x1073 7.01x107° 7.01x107°
3/11.25%x107! 1.26x1072 1.44x10"* 1.44x10°*
41590%x10°t 3.29%x1072 229x107* 2.83x10°*
513.07x10° 269x107! 257x107*% 1.59x10~*
6 |388x10° 3.87x10° 6.90x10~* 6.34x10°*
718.07x10° 1.48x10' 381x103 1.95x 1073
81259 %10 279x101 4.68x10°2 4.68x 102

Table: Error of the Normal Stress Difference compared to Fokker-Planck

equation




Internal Elastic Energy

Numerical results— elongational flow
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Figure: Comparison of the Elastic Energy




Numerical results— elongational flow

% | FENE-P FENE-YDL FENE-QE FENE-QE-PLA
1[247x1072 322x10°% 353x10° 3.53x10°°
2 1451x1072 1.87x1073 520x107° 5.20x10°°
3/832x1072 6.56x1073 8.86x 107> 8.86 x 107>
41335x1071 1.09x1072 1.20x10™* 1.54x10~*
5| 156x10° 1.68x 1071 2.05x10"> 9.33x10°°
6199 x10° 1.88x10° 3.59x10"% 3.28x10°*
71258x10° 6.50x10° 3.55x10"% 6.38x10°*
8 858x100 1.14x10' 1.36x1072 1.36x 1072

Table: Error of the elastic energy compared to Fokker-Planck equation



Numerical results— Lid driven cavity

Lid driven cavity

The simulation area is a 2-dimensional square cavity [0, 1] x [0, 1]
whose top wall moves with a velocity distribution of

u(x,y =1,t) = 16 x a(t) x*(1 — x)?

Here & is a constant and to start up the flow smoothly, a(t) is
chosen as a time dependent factor of

a(t) =

01t 0<t<10
1 t>10




Numerical results— Lid driven cavity
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Numerical results— Lid driven cavity
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Numerical results— Lid driven cavity
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Figure: Vertical velocity (left) and its error plot (right) on line y = 1
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Numerical results

Computational cost comparison

model homogeneous lid-driven cavity
shear Kk = 20 | mesh 50 x 50, k =1

FENE-QE 285s

FENE-QE-PLA <ls 716s

FENE-P <1s 96s

FENE-YDL <1s 102s

BCF 1.7 x 10* x 10s

Table: Computational cost comparison. Closure models are tested on a

PC with a 3GHz Intel Pentium IV CPU. BCF (N = 4000) is run on te

3.2GHz Intel Xeon CPUs.
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System configuration

assumption about macromolecules: rigid rod-like, very long.

nonhomogeneous, configuration distribution function (CDF)

depends on spatial variables and orientational variables:
f(x,m,t)

non-local intermolecular potential
U(x, m, t) / G(x—x',m m’)f(x',m’ t)dm’dx’.
m/|_

hydrodynamic-kinetic coupled incompressible isothermal
system




Free energy

The free energy of the system is given by (for simplicity, kT is

omitted)
A[f]:// Fin f + S fUdmdsx,
Q Jjm|=1 2

Then the chemical potential is

0A




Kinetic equation

The equation for f(x, m, t) reads

%—i—u-Vf = V- {[Dymm + D, (1 - mm)] - (FVp) |
4R (Dr(m)(fRM)) —R- (m X K - mf),

e Dy, Dy : coefficients for translational diffusion parallel and
perpendicular to the locale molecules orientation.

e D,(m) is coefficient for orientational diffusion.
e R=mx9/0m, k= (Vu)'.




Hydrodynamic equations

@ continuity equation (assume p weak depends on v = (1))
V-u=0

@ momentum equation

0
p[8—:+(u-V)u}+Vp:nsAu+v-rs+V-Te+Fe,

7s is the solvent viscosity, F€ is body force, 7€ is polymer
elastic stress, 7° is polymer viscous stress.

7° =¢&.D : (mmmm),

D = (k + xT)/2 is the strain rate tensor, &, is the coefficient
of friction for solvent. -



Elastic stress and body force

The elastic stress and body force read (virtual work principle)

e

¢ = —(mm x Ry),
F¢ = —/ VUf(x,m, t)dm = —(VU).
|m|=1




Non-local excluded volume potential

We assume the mean-field intermolecular interaction takes form

(xX'=x, m) + g(x'—x, m’)

G(x—x’,m,m’):Uog 5 Im x m'|?

/ 2 / 2 ' 2

, 1 |(x' —x) - m| X' —x[2 = |(x'=x) - m|
g(X _xam):E 2g< > + > )

Some special form:

@ In homogeneous system, leads to Maier-Saupe potential:

Uus(m,t) = Uo/ Im x m/>f(m’, t)dm’
jm|=1

= Up(vl — M) : mm




Non-local excluded volume potential

@ In nonhomogeneous system, can lead to Marrucci-Greco
potential (weak distortion)

U(x, m, t)
= U|[(1-ad)(wl—M): mm+ %mm:v2(ul—/\/l):mm

+%v2 (Ml = Q) : mm]

@ isotropic long range interaction €1 = ep = ¢

(one-constant approximation)
1 X —x[?
g(x' —x,m) = *g(|7|

Se(F5) = —x)

U = U g+l —M):mm




Energy dissipation

Energy dissipation of the hydrodynamic-kinetic coupled system

ds d 1
TI = dt(/ —pu - udx+A[f])

= / nsVu : Vu + &((mm : £)?) dx
L o
|m|=1
+Vpu- [(Dy=D1)mm-+ Dy 1] - Yy} dmdx

It is non-negative provided:

775207 fr207 DH207 D”_DLZO) Dr(m)ZO




Second-order moment model

dd—l\t/l = DL[AI\/H— UV - [V(vl - M)*ga:QH

+K"M+M-K;T—2K;: Q

Q = (m*), P = (m%). One-constant approximation and
pre-average of D,(m) are adopted. Meanwhile the stress and body
force can be expressed by moments,

y— (3M—I/I)_UO(M‘M*gE+M*g€'M_2M*gE:Q)’ :
F¢ = —V(V/ — M) *ge @ M,
™ = &k Q.



Second-order moment model — Bingham closure

Given M, we take the Bingham distribution as reference CDF
1
fm(m) = . exp(m - B-m),

where B is a symmetric second order tensor. z is a normalized
parameter. B, z are determined by

M= fm(m)mmdm
m|=1

Q, P are approximated by
QR = / fM(m)m4 dm,
|m|=1

P = / fas(m)m® dm.
|m|=1




Second-order moment model — energy dissipation

The energy dissipation of the reduced model reads

dsS d 1

- /Q (nsVu : Vu + & ((mm : n)2>}f:fM)dx
+ / / DRy Ry
Q Jim|=1 { |f*fM
+V- (D)= D1 )mm-+ D] - Vp|,_ |y dmdx
It is non-negative provided

s >0, & >0, D, >0, D >0, Dy~ Dy >0.




Fourth-order moment model

Fourth-order model for anisotropic long range potential

@ Marrucci-Greco potential
U = U:mmmm

U= U[(1+ad)vl-M)I+2 (VA (vI-M)+V? : (MI—-Q)I)].

@ Polymer stress

T = [(3/\/’ —vl)+ 4(_Jrsij'Drsijk/ - Uriijerk/ - Driijrik/
_Urijk Qrijl - Urijl Qrijk]»
™ = &k Q.

@ Body force F€ = 0, and the kinetic model satisfy energy
dissipation.




Fourth-order moment model

dQ  dQi  dQ & dQs
g dt T dr T ar

dd—% = V- [DL(VQ + VU :: Mg) + (Dyj—D1)(V-P+ VUS:Mlo)]
dTC? = D/[(R-R(mmmm)) — U :: (R;(mmmm) - R;(mmmm))]

dT(is = —k" : (mm x R(mmmm))

[dQ3

F] ikt = Hrs Prsijit = ori Qujkt = 1 Qrikt — Fork Qriji — Kot Qi




Fourth-order moment model

Given Q, we take the reference CDF as
1
fo(m) = ;exp(mm ©Y : mm)
Y is a fourth-order symmetric tensor, and determined by

Q= fo(m)mmmmdm
[m|=1
Then P, Mg, M1y are approximated by
P = / fo(m)m®dm Mg = / fo(m)m®dm
m|=1

Im|=1

Mo :/ fo(m)m®dm
|m|=1




Fourth-order moment model

The energy dissipation of the system reads

dS d 1
dt = dt(/ ~pu - udx—i—A[Q])

= /HSVUZVU+§rKIQZ/€dX
Q
—f—/QV[L i <DLm8 + (D”—DL)mlO}!f:fQ i (Vﬂ)de

R T
fpy R dx,

—i—/ Diji :: (Ri(mmmm)R;(mmmm))|
Q

where i=Y —Inzll + U .

It is non-negative, provided ns >0, £, >0, D, >0, D, >0 and
Dy~ Di >0.




Issue of implementation

e Efficient algorithms of evaluating Q(M), P(M) according to
Bingham closure are needed to make the closure
approximation practical

o Legendre integrator scheme of llg et al (2000, 2003) is not
efficient enough for nonhomogeneous simulation

e Fortunately, Q(M), P(M) are not depended on the dynamics.
There are two approaches to evaluate them




Issue of implementation — Bingham closure

Evaluating in local coordinate system [Chaubal and Leal 1998]
M = Diag(S]_,Sz, 1_51_52)a B = Diag(lla /2) 1_/1_I2)
Q@ has 6 non-zero components:

Q1111, @2222, (3333, QR1122, R1133, (2233,

but only 3 are independent, because of }_; Qij; = Mj; = s;
Fit Qr111, Q2222, @3333 by polynomials of s1, sp:

i = ko + kis1 + k2512 + kgsf +...+ k951522.

the coefficients k; determined by least-square method, while &
Qiiii, 51, S2 are obtained by integral on given (1, k) samplesu



Issue of implementation — Bingham closure

Explicit form [Grosso et al 2000]. A general expression of Q in
terms of M:

Qi = B1G(0ji0x1) + B2G(0;; M) + B3G(Mjj Myy)
+B84G (0 MikmMmi) + B5G (Mij My M)
+B86G (MimMmj My M)

where G is symmetrization operator

1

G(Xijur) = Q(Xijkl + Xiji + - - -).

G; depend on the two independent invariants of M:

1
h=5(1—M:M), I=det(M).

and ; are fitted by polynomials with least-square method®




Issue of implementation — Bingham closure

@ These two approaches could be extended to higher-order
quasi-equilibrium closure approximation

e Employ piecewise linear approximation (PLA) or other

numerical skills if Q(M), P(M) are singular in some special
system




Numerical results of Bingham closure model

Bingham closure agrees with the exact kinetic theory
qualitatively for homogeneous and nonhomogeneous system,
except for its failure to predict flow-aligning at high Deborah
number and high nematic potential strength

It agrees with the exact kinetic theory quantitatively when
nematic potential strength in the middle region.

The position of homoclinic bifurcation predicted by Bingham
closure is different with the exact kinetic theory in
two-dimensional problem. The difference is not clear in
three-dimensional problem.

In general, Bingham closure is more accurate than other
closures, e.g. Doi's quadratic closure, HL1, HL2 etc




Homogeneous bifurcation diagram

201

151

101

Figure: The horizontal axis is nematic potential strength Up; the vertical
axis is the Deborah number De. Blue lines are of exact kinetic theory, Re
lines are of Bingham closure.




Nonhomogeneous results

Bingham closure can predict the five modes of director
configurations in Couette flow as exact kinetic model

e (a) ES: elastic-driven steady state
b) T: tumbling state
c) TWD: tumbling-wagging composite with inside defects

(
(
(
(

)
d) W: wagging state
)

e) VS: viscous-driven steady state




Modes of director dynamics
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Figure: Five flow modes. Colors represent the director angle. The hori-

zontal axis is dimensionless time and the vertical axis is the distance t@&=
lower slab. The parameters are Uy = 6 (a)De = 0.01; (b) De = 1.0; (¢}t
De = 2.0; (d) De = 4.0; (e) De = 6.0. <



Defect dynamics
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distance to lower slab.



Defect dynamics in Poiseuille flow
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Figure: Typical orientational configuration in Poiseuille flow. Uy = |
5.5,De = 1.0. (a) exact kinetic model, (b) Bingham closure. Colorss &
represent the director angle. The horizontal axis is dimensionless time and==

the vertical axis is the distance to lower slab.




Error of Bingham closure
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Figure: The error of Bingham closure in every time step of exact kinetic
simulation. Uy = 5.5, De = 1.5. The horizontal axis is dimensionless time
and the vertical axis is the distance to lower slab. Colors represent th
total error of five components of @ evaluated by Bingham closure




Outline

Conclusion and comments




Conclusion and comments

We present four criterions for closure approximations.

@ Quasi-equilibrium closure approximation of FENE model
(FENE-QE) satisfies the first three criterions

Piecewise linear approximation is introduced to reduce the
computational cost of FENE-QE without losing accuracy

A general nonhomogeneous model of LCPs is presented. And
reduced moments models keeping energy dissipation are
proposed by quasi-equilibrium closure

The second-order Bingham closure model agrees with the
exact nonhomogeneous kinetic model qualitatively, except for
the failure to predict flow-aligning when nematic potential
strength and Deborah number are very high

The closure problem of kinetic models of LCPs are more
difficult than FENE model of dumbbell polymer (nonlineag, .
phase transition). Higher-order tensor models are needed %
give more accurate results



The End

Thank You !




Appendix A

The HL1 and HL2 closures (Hinch and Leal 1976)
e HL1

1
B:Q=[6M-B-M—B:MM+2I(M—M-M): B

e HL2
M-M:(k+r")

B:Q = MM:B+2M-B-M- =t
+p [EB_%<B.M+M-B—§(A:M)I)]

where p = exp[(2 —6M:M)/(1 — M: M)].
In this two equation, B is any traceless tensor. @ is fourth- order 3
moment of CDF. i




Appendix B

Energy dissipation of Bingham closure model of LCPs

Definition of free energy
1
A[M] = / / fm In fap + = Ufpydmdx
Q Jim|=1 2
Uo
= (B—Inzl):M+7g€*(ul—M):de.
Q
The chemical potential under reference CDF reads

KM = [y o mm,

where fiyy = (B — Inz 1) + Upy and Uy = Upg.* (vl — M)




Appendix B

Calculate the energy dissipation

dS d 1
dt = dt{/ —pu - udx—i—A[l\/I]}

d
= —/pu-utdx—/(B—Inz/):de

dM  Upd -
—/Q(B—Inzl).dt—l—2dt[UM.M)]dx

N / - [nsDu+V - 7° + V- 7° + F¢ — Vpldx

am
/dx—/ﬂ/\/[ ﬁdx




Appendix B

— /QnsVu Vu+&k: Q: kdx
+2D, /Q(/]M),-j(é,-kMU + Miidij — 2Qijia ) (Fina )t dx
+ /Q VﬁMf((D” —D))P+ DJ_<mmImm))f(VﬁM)de
It is non-negative provided ns > 0, &, >0, D, >0, D, > 0 and
Dy - D, >0.

In the calculation, Identity (B —Inz/); : M = vy and mass
conservation fQ vdx = Constant are employed.




Appendix C

Energy dissipation of fourth-order tensor model of LCPs

AlQl = // fylnfy—klfyUdmdx
Q Jm|=1
1

N |

- /(Y—Inzl/):: Q+ -U: Qdx
Q

dS d 1
Ta = ‘dt(/gzﬂ“'“dx“‘[‘?])
_ L 4@ 1d m
= /qu~utdx/Q(Y|nle) S +2dt(U.. Q)dx

= /nSVu:Vu—i—f,n:Q:mdx
Q

N

+/QV[L:: |Du Mg + (D =D )Mol = (V)T ax &

+/ D, - (Ri(mmmm)R;(mmmm)) :: 7 dx
Q
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