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Some examples of equation-free computation

An Input-Output Approach 
to Multiscale Computation



SIAM– July, 2004

Clustering and stirring in a plankton model

Young, Roberts and Stuhne,  Nature 2001



Dynamics of System with 
convection



Simulation Method

• Random (equal) birth and death, 
probability: λ = μ.

• Brownian motion. 
• Advective stirring. (ϕ, θ are random 

phases)

• IC: 20000 particles randomly placed in 1*1 
box
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Stirring by a random field (color 
= y)



Projective Forward Euler Method - linear fit to last two points

One outer integrator step  - Φ1



k=2,    M=5, 7, and 9





Projective Integration: From t=2,3,4,5 to 10



RESTRICTION - a many-one mapping from a high-dimensional 
description (such as a collection of particles in Monte Carlo 
simulations) to a low-dimensional description - such as a finite 
element approximation to a distribution of the particles.

LIFTING - a one-many mapping from low- to high-dimensional 
descriptions.

We do the step-by-step simulation in the high-dimensional 
description.

We do the macroscopic tasks in the low-dimensional description.
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Projective Integration in a co-traveling frame
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t+Δt+T traveling wave solution

wrong projection

projection in a co-traveling frame



Coarse Self-Similar Solutions:

Dynamic Renormalization using Coarse Timesteppers.

An analogy:  problems with traveling solutions (translational invariance)
Move along with the solution – it appears steady
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Original Equation

Transformed equation

(template-based reduction/reconstruction, 
Rowley and Marsden, 2000)

problems with focusing or collapsing solutions (scale invariance)
explode along with the solution - it appears steady

Mid-80’s: Lemesurier, the Sulems,, Papanicolaou…..

Templates:  Aronson, Betelu and Kevrekidis, 2001

Original Equation

Transformed equation

(u)L
t
u

=
∂
∂

Rowley, Kevrekidis, Marsden and Lust, 2003)

Coarse renormalization flow integration / bifurcation analysis
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Time evolution of an initial 
rectangular density profile

by the 1d diffusion equation

Dynamically renormalizedRegular



1D glass compaction model



Simulation Method

• 100000 particles at given density placed in 
1D simulation box with periodic boundary 
condition.

• Particles interact through hard-core 
potential.

• Monte Carlo random walk is performed in 
each step.

• Once a gap of unit size opened up 
between two adjacent particles, an 
additional block will deposit.



Glassy dynamics

Dynamics in linear time Dynamics in logarithmic time
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Eq. 7 Stinchcombe
PRL 88, 125701 (2002)



Void Distribution: Self-Similar 
Dynamics



Schematic view of the dynamically 
renormalized coarse timestepper



Microscopic

Timestepper

LIFT

RESCALE

Consistent Microscopic ICs

Macroscopic Description

(void CDF @ t=0)

µ
RESTRICTM

void CDF @ t=τ

void CDF @ t=τ
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THE CONCEPT:   What else can I do with an integration code ?

Have equation

Write Simulation 

)(xfx =&

( )x t

Do Newton on 0=Φ− )(xx

TΦ

Do Newton

Compile 
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Estimate

matrix-vector 
product

Matrix free
iterative linear algebra

The World

CG, GMRES
Newton-Krylov



̂CDF (x, τ ) − CDF (x, 0) = 0.
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Coarse, reverse, projective, 
in renormalized frame…

integration
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Randomly forced Burgers equation in 1-D
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• High Reynolds number regime modeled by a 
hyperviscosity term acting essentially at the
smallest scales

• White-in-time forcing acting at scales much 
smaller than the size of the system

Wavenumber, k
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• Velocity field u(x) is stochastic and consists of tiny shocks 
• The fields at different times “look” the same 

Why E(k)?



• Velocity field u(x) is stochastic and consists of tiny shocks 
• The fields at different times “look” the same 
• Energy spectrum enables us to distinguish between the fields
• “Coarse Evolution” of E(k) appears deterministic

Why E(k)?



Behavior of E(k)

mleft

mright

corner
fulcrum

kc kful

• Fast evolution for the large wavenumbers to 
stationarity - THEN slow –and slower-
evolution for small wavenumbers

• Steady state for small wavenumbers:    
E(k)=const

• Transient evolution in the small wavenumber 
region can be described by two straight lines



Projective integration
1. Run the simulation for short time and get the averaged stretching factor



Projective integration
1. Run the simulation for short time and get the averaged stretching factor
2. Project E(k) using the predicted value of the stretching factor (LIFT)



Projective integration
1. Run the simulation for short time and get the averaged stretching factor
2. Project E(k) using the predicted value of the stretching factor (LIFT)
3. Randomize the phases to generate new initial conditions  

S3(r) goes to zero



Coarse Projective integration
1. Run the simulation for short time and get the averaged stretching factor
2. Project E(k) using the predicted value of the stretching factor (LIFT)
3. Randomize the phases to generate new initial conditions

S3(r) goes to zero
4. Continue the simulation with new ic’s
5. S3(r) gets enslaved to the steady state value in less than 100 time steps



Projective integration
1. Run the simulation for short time and get the averaged stretching factor
2. Project E(k) using the predicted value of the stretching factor (LIFT)
3. Randomize the phases to generate new initial conditions

S3(r) goes to zero
4. Continue the simulation with new ic’s
5. S3(r) gets enslaved to the steady state value in less than 100 time steps
6. E(k) thus obtained evolves with the original simulation



“Non self-similar” initial condition

• Projective integration designed for initial conditions in the “self-
similar” regime  
• Other initial conditions renormalized using run and restrict algorithm
• Forward-tilted and backward-tilted initial conditions considered

forward tilted

backward tilted



Renormalization algorithm

• A simplified initial condition

log(k)

lo
g 

E(
k)



lo
g 

E(
k)

log(k)

• A simplified initial condition 
• Run for short time (5000 time steps) 

Renormalization algorithm



lo
g 

E(
k)

log(k)

• A simplified initial condition
• Run for short time (5000 time steps) 
• Approximate the spectrum by straight lines

Renormalization algorithm



• A simplified initial condition 
• Run for short time (5000 time steps) 
• Approximate the spectrum by straight lines
• Pull back the shape keeping the initial ordinate fixed 

Renormalization algorithm

log(k)

lo
g 

E(
k)

log(k0)

same shape



• Sequence of iterations leading to the right shape
• Comparison with a representative spectrum

Forward tilted i.c.
• convergence in 6-8 iterations

Renormalization algorithm



• Sequence of iterations leading to the right shape
• Comparison with a representative spectrum 

Forward tilted i.c.
• convergence in 6-8 iterations

Backward tilted i.c.
• convergence in 1 iteration

initial 
condition

corrected i.c.

Renormalization algorithm



A r-fixed point computation



Rare Events at the Onset of Motion:
a magnetization front in a field of mobile impurities



Model for domain walls and impurities

•Simple lattice model – tractable 
numerically but physically 
motivated (Mendelev and 
Srolovitz, 2001)

•Write the model Hamiltonian as

•No double occupancy of the 
interstitial impurity sites

0i j i i j
ij i i j

H J s s h s E c s
< >

= − − +∑ ∑ ∑ ∑

•Important parameters:  domain wall length W, external drive h, 
impurity-domain wall interaction energy E0, impurity density cimp, 
and impurity diffusivity D 
•Simulation method:  kinetic Monte Carlo



Domain wall dynamics

•For fixed drive and diffusivity, small interaction energy|E0| leads 
to smooth propagation
•Increasing |E0| leads to “jerky” motion with long periods of 
“pinning” and “running”

Increasing |E0|



“Jerky” motion of the domain wall

•In the jerky regime, pinned state is 
characterized by a large number of 
impurities along the domain wall N(t)
•Running state is characterized by a 
small number of impurities along the 
domain wall
•More quantitatively, the two states 
correspond to two different average 
impurity numbers along the domain 
wall

•This suggests a two-state picture of 
the domain wall/impurity dynamics!



Coarse Fokker-Planck analysis

•Quantitative picture:  assume that N(t) is a Markovian (i.e., no 
memory effects) and Gaussian process ↔ can derive an 
equation for the time evolution of the probability distribution 
P(N,t) (also known as the Fokker-Planck equation!):

•The so-called drift (V) and diffusion (D) terms can be extracted 
from numerical data by employing the following (formal) 
definitions:

•Important:  V(N) and D(N) are required for all possible values 
of N!

2

2

( , ) ( ) ( ) ( , )P N t V N D N P N t
t N N

⎡ ⎤∂ ∂ ∂
= − +⎢ ⎥∂ ∂ ∂⎣ ⎦

0( ) lim tV N N tΔ →≡ Δ Δ [ ]2
02 ( ) lim tD N N tΔ →≡ Δ Δ



Reconstruction of Free Energy 
Surface

1 ( )
d N

G N
dt γ

′= −

var( ) 2 Bd N k T
dt γ

=

.
( ) ( )N G N F tγ ′+ =

Obtain G(N) and γ(N) from short-scale nonequilibrium simulations



Effective free-energy – weak interaction

•G has only one minimum – no matter where N starts at, it very 
quickly relaxes towards this global minimum
•This implies that there is only one “coarse steady-state”, and thus 
a unique speed (i.e., no hysteresis)!



Effective potential – strong interaction
Φ k B

T

NF NU NS

•Familiar double well 
structure with local 
minima at N=4 and 
N=24, and (unstable) 
saddle point around 
N=11
•System initially around 
one of the local minima 
remains there untill a 
sufficiently large 
fluctuation comes 
along!!



Motivation

FFC

<v>

OR

F

<v>

In essence, we are asking whether the response of the 
system is one of the following:

We will argue that the answer is, in some sense, “both”!!We will argue that the answer is, in some sense, “both”!!

PURE SYSTEM



Speed vs. heat of segregation

•Computed speed V vs. E0 graph 
contains multiple solutions over a 
wide range of interaction energy –
observation of hysteresis possible!!!

•The analysis & data are consistent 
with the following “common 
sense” thoughts: 

(1) A domain wall with just a few 
impurities is (more or less) free to 
propagate;  need a critical 
number of impurities to slow 
down propagation sufficiently 
and collect even more 
impurities!  

(2) If the domain wall is 
saturated with impurities, 
it will remain saturated for 
some time until it loses the 
impurities.  



and now for something completely different:  
Little stars ! (well….   think fishes)





Fish Schooling Models
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Update Direction  for Informed   Individuals ONLY ( )ttdi Δ+'

Zone of Deflection Rij<α Zone of Attraction Rij<ρ

Normalize → ( )ttdi Δ+ˆ

INFORMED
UNINFORMED

Update Positions

( ) ( ) ( ) tsttvtcttc iiii ΔΔ++=Δ+

Position, Direction, Speed

Couzin, Krause,
Franks & Levin (2005)

Nature (433) 513



STUCK

~ typically around
rxn coordinate

value of about 0.5

INFORMED DIRN

STICK STATES

INFORMED individual
close to front of group

away from centroid



SLIP

~ wider range of
rxn coordinate values

for slip 0 0.35

INFORMED DIRN

SLIP STATES

INFORMED individual
close to group centroid



Effective Fokker-Planck Equation
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Coarse Free Energy Calculation
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Estimate Drift and Diffusion 
coefficients numerically 
from simulation “bursts”
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Kopelevich, Panagiotopoulos & Kevrekidis
J Chem Phys 122 (2005)

Hummer & Kevrekidis
J Chem Phys 118 (2003)

Improved estimates using
Maximum Likelihood Estimation (MLE)

Y. Aït-Sahalia.
Maximum Likelihood Estimation of Discretely Sampled Diffusions:

A Close-Form Approximation Approach.
Econometrica 70 (2002).



STUCK
SLIP

SLIP

Energy Landscape – Fish Swarming Problem

CENTROID
Informed DIRN



PHYSICAL
CHANGE

VARIABLE CHANGE

Smooth Change in Problem 
↔

Smooth Change in Variables

10,000 10,001

0 1



Using computer to select variable
Rationale:

Lake Carnegie, Princeton, NJ

Straight Line Distance

between locations

NOT representative of 
actual transition 

difficulty\distance



Using computer to select variable
Rationale:

Lake Carnegie, Princeton, NJ

Straight Line 
Distance

Actual transition 
difficulty represented 

by curved path

Curved Transition Distance



Using the computer to select good variables
Rationale:

Lake Carnegie, Princeton, NJ

Straight Line Distance
IS representative of 

actual transition 
difficulty\distance

in small
LOCAL patches

Patch size related to 
problem “geography”



Using computer to select variable
Rationale:

Lake Carnegie, Princeton, NJLake Carnegie, Princeton, NJ

Euclidean Distance

Selected Datapoint

X
Y

Z3D Dataset 
with 2D manifold

Euclidean distance in input space
may be weak indicator 

of INTRINSIC similarity of datapoints

Geodesic distance is good for this dataset



Multiple random walks 
through simulation data

initialized at

Unequal separation 
(Euclidean distance) 

between IC (   ) and limits of 
random walk  (   ,   )



Parameter    
Local neighborhood size

Compute N×N “neighborhood” matrix K

( ) ( ) 2

, exp
i j

i jK
σ

⎡ ⎤⎡ ⎤−⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦
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Compute diagonal normalization matrix D
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D K
=
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1M D K−=
Compute Markovian matrix M

N datapoints

1 1 1M λ=Φ Φ

2 2 2M λ=Φ Φ

N N NM λ=Φ Φ

•
•
•

Require: Eigenvalues λ and Eigenvectors Φ of M

1 2 3 Nλ λ λ λL= 1 > > >

A few Eigenvalues\Eigenvectors provide
meaningful information on dataset geometry

Top

2nd

Nth

•
•
•



Dataset in x, y, z Dataset Diffusion Map

N datapoints N datapoints

eigencomputation

( ) ( ), , ,  1,i
i i ix y z i N= =x ( ) ( ) ( )( )2 3, ,  1,i i i i N= Φ Φ =Φ

Diffusion Maps

R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker,
Geometric diffusions as a tool for harmonic analysis and structure definition 
of data: Diffusion maps.
PNAS 102 (2005).

B. Nadler, S. Lafon, R. Coifman, and I. G. Kevrekidis,
Diffusion maps, spectral clustering and reaction coordinates

of dynamical systems.
Appl. Comput. Harmon. Anal. 21 (2006).



Diffusion Map (Φ2, Φ3) 

Φ2

Φ3

Φ2

ABSOLUTE Coordinates SIGNED Coordinates

Report absolute distance
of all uninformed individuals

to informed individual to DMAP routine 

Report (signed) distance
of all uninformed individuals

to informed individual to DMAP routine 

STICK

SLIP
STICK

SLIP

Reaction 
Coordinate
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ABSOLUTE Coordinates SIGNED Coordinates


