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SP and DSS for Filtering Sparse Geophysical Flows

Outline

1 Filtering
Fourier Domain Kalman Filter (FDKF) with regularly spaced sparse observations.

2 Filtering with Superparameterization
linear, analytically solvable model,
model error coming from finite discrete approximations.

3 Filtering with Dynamic Stochastic Superresolution (DSS)
nonlinear model,
using cheap stochastic models to forecast the true nonlinear dynamics.

Test Models for Filtering with Superparameterization, John Harlim and A. J. Majda, submitted, SIAM J.
Multiscale Modeling and Simulation, September 9, 2012.

Dynamic Stochastic Superresolution of sparseley observed turbulent systems, M. Branicki and A. J.
Majda, submitted, Journal of Computational Physics, May 17, 2012.

New methods for estimating poleward eddy heat transport using satellite altimetry, S. Keating, A. J.
Majda and K. S. Smith, Monthly Weather Review, February 9, 2012.
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Basic Notions of Filtering and Test Models for Filtering
with Superparameterization

1 Filtering the Turbulent Signal
Kalman filter
Fourier Domain Kalman Filter (FDKF)
FDKF with regularly spaced sparse observations

2 Test Models for Superparameterization
Test model
Numerical implementation
Small-scale intermittency
Superparameterization
Other closure approximations

3 Filter Performance on Test Models
Stochastically forced prior models
Controllability
Remarks
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Filtering the Turbulent Signal

Kalman filter

I. Filtering the Turbulent Signal
1.1. Kalman Filter

True signal ⇤um+1 ⇤ RN , which is generated from

⇤um+1 = F⇤um + ⇤⇥m+1 ,

Observation ⇤vm+1 ⇤ RM :

⇤vm+1 = G⇤um+1 + ⇤⇥o
m+1 ,

where matrix G ⇤ RM�N and ⇤⇥o
m = {⇥o

j,m} is an M-dimensional Gaussian while
noise vector with zero mean and covariance

Ro = ⌅⇤⇥o
m ⇥ (⇤⇥o

m)
T ⇧ = {⌅⇤⇥o

i,m(⇤⇥
o
j,m)

T ⇧} = {�(i � j)ro}

Forecast model:

⇤uMm+1 = FM⇤uMm + ⇤⇥M
m+1 ,

where FM ⇤ RN�N and ⇤⇥M
m is an M-dimensional Gaussian while noise vector with

zero mean and covariance

RM = ⌅⇤⇥M
m ⇥ (⇤⇥M

m )T ⇧.

Goal: Estimate the true state: ⇤um+1 ⇤ RN from the imperfect prediction model and
the observations of the true signal.
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Filtering the Turbulent Signal

Kalman filter

Step 1. Forecast:
Run the forecast model from step m to m + 1,

⇥uMm+1|m = F⇥uMm|m + ⇥�M
m+1.

Compute the prior mean and covariance

⇥̄uMm+1|m = FM⇥̄uMm|m,

RM
m+1|m = FMRM

m|m(F
M)T + RM .

Step 2. Analysis:
Compute posterior mean and variance

⇥̄uMm+1|m+1 = ⇥̄uMm+1|m + Km+1(⇥vm+1 � G⇥̄uMm+1|m),

RM
m+1|m+1 = (I � Km+1G)RM

m+1|m,

where Km+1 is the Kalman gain matrix

Km+1 =
RM
m+1|mG

T

GRM
m+1|mG

T + Ro
.
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Filtering the Turbulent Signal

Fourier Domain Kalman Filter (FDKF)

1.2. Fourier Domain Kalman Filter (FDKF).
Canonical Filtering Problem: Plentiful Observations

⇤

⇤t
⌅u(x , t) = L(

⇤

⇤x
)⌅u(x , t) + ⇥(x) ⌅̇W (t), ⌅u ⇥ Rs ,

⌅v(xj , tm) = G⌅u(xj , tm) + ⇥o
j,m.

The dynamics is realized at 2N + 1 discrete points {xj = jh, j = 0, 1, . . . , 2N} such
that (2N + 1)h = 2�. The observations are attainable at all the 2N + 1 grid points.
The observation noise ⇥o

m = {⇥o
j,m} are assumed to be zero mean Gaussian variables

and are spatial and temporal independent.
Finite Fourier expansion of ⌅u(x , t):

⌅u(xj , tm) =
�

|k|⇤N

⌅̂u(tm)e
ikxj , û�k = û⇥k ,

⌅̂u(tm) =
h

2�

2N�

j=0

⌅u(xj , tm)e
�ikxj .

Fourier Analogue of the Canonical Filtering Problem:

⌅̂uk (tm+1) = Fk
⌅̂uk (tm) + ⌅⇥k,m+1,

⌅̂vk (tm) = G⌅̂uk (tm) + ⌅⇥o
k,m.

Then the original (2N + 1)s � (2N + 1)s filtering problem reduces to study 2N + 1
independent s � s matrix Kalman filtering problems.
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Filtering the Turbulent Signal

FDKF with regularly spaced sparse observations

1.3. FDKF with regularly spaced sparse observations.
Assume there are N model grid points. We consider the observations at every p

model grid points such that the total number of observation is M with M = N/p.
Sparse Regularly Spaced Observations in Fourier Space is expressed as follows:

⇥̂uk (tm+1) = Fk
⇥̂uk (tm) + ⇥�k,m+1, |k| � N/2,

⇥̂vl (tm) = G
�

k�A(l)

⇥̂uk (tm) + ⇥�o
l,m, |l | � M/2,

where the aliasing set of wavenumber l is defined as
A(l) = {k : k = l +Mq|q ⇥ Z, |k| � N/2}

Figure 1: 5⇥ 5 sparse observation grid is a regular subset of the 20⇥ 20 model mesh so that every
P = 4 model mesh node is observed. Here N = 20 and M = 5. There are 25 aliasing sets in all:
A(i, j) with i, j ⌅ Z and �2 ⇤ i, j ⇤ 2. All primary modes lie inside the region �2 ⇤ kx , ky ⇤ 2.
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Filtering the Turbulent Signal

FDKF with regularly spaced sparse observations

The aliased Fourier modes in geophysical systems with quadratic, advection-type
nonlinearity are expected to be relatively weakly correlated.

In such systems the quadratic nonlinearities do not directly couple the Fourier
modes contained in the same aliasing set; that is, if mode k is in the aliasing set A,
the quadratic couplings in the dynamics of uk have the form

duk
dt

�
�

ulum, k ⇥ A, l,m ⇤⇥ A
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Dynamic Stochastic Superresolution 
of sparsely observed turbulent systems



Branicki & Majda,  “Dynamic Stochastic Superresolution of sparsely observed 
turbulent systems”,  J. Comp. Phys. 2012

Keating, Majda & Smith, “New methods for estimating poleward eddy heat 
transport using satellite altimetry”,  Mon.  Wea. Rev. 2012

Majda & Harlim, Filtering Complex Turbulent Systems, Cambridge Univ. Press 
2012

Harlim & Majda, “Filtering Turbulent Sparsely Observed Geophysical Flows”, 
Mon. Wea. Rev.  2010

Harlim & Majda, “Mathematical Strategies for Filtering Complex Systems: 
Regularly Spaced Sparse Observations”,  J. Comp. Phys. 2008

References:



  Filtering sparsely observed spatially extended systems  

Estimate the evolution of the true solution              of    

discretized on a regular grid. 

model grid

sparse observations

given sparse-in-space, discrete-in-time observations

@tu = F(u)

u(t, x)

and the model

@tu
M = L

✓
@

@x

◆
u

M + �(s)Ẇ (t)



  DSS via Kalman Filtering in Fourier domain 

Outline:

  DSS framework for sparsely observed turbulent systems

  Aliasing - ally or enemy?

  Examples of DSS skill in spatially extended systems

 Black swan detection in synthetic examples

  DSS in 1D turbulent spatially extended systems

  DSS in 2D turbulent spatially extended systems

(eddy heat flux estimation from sparse satellite altimetry)



   Consequences of assimilating sparse observations 

Aliasing
sparse regular observations alias higher 

wavenumber information into the resolved 
wavenumber band

Aliased observations can be used to estimate the unresolved modes

sin 2x
sin 7x
sin 22x



 Consequences of assimilating sparse observations 

Aliasing set of wavenumber

model grid 

observation grid 
M̃ ⇥ M̃

Sparse obs in physical space Fourier space 

v̂{l}m = G
X

k2A(l)

û
k,m

+ �obs

{l}m/M̃2
v(i,j)m = Gu

�
x

i

, y

j

,m�t

�
+ �

obs

m



Observed aliased 
signal

Aliasing modes

Do we gain from estimating the aliased modes?

Use aliasing to superresolve the signal  “on the fly”

h|u1|2i ⇠ h|u2|2i ⇠ h|u3|2i h|u1|2i � max(h|u2|2i, h|u3|2i)YES, when NO, when

Stochastic 
model with 

judicious error 
+ 

Kalman filter



   The stochastic forecast model in DSS 

 SPEKF forecast model (Gershgorin et al. 2010)

 Use a cheap exactly solvable forecast model

Number of judicious simplifications introduced in the model dynamics and its statistics  

bk

�k

!k

�k !k bk



bk

�k

!k

�k !k bk

bk

�k

!k

�k !k bk

observations forecast model 

Kalman filter  

 DSS through Kalman filtering 

k1

k2



  DSS via continuous-discrete Kalman filtering in Fourier space 

Exactly solvable forecast in each aliasing set

Kalman update:

Observations:

A(l)

Estimate the aliasing modes           using 
cheap exactly solvable non-Gaussian forecast and Gaussian approximation for the posterior.  

Harlim & Majda 2008

ūuum+1|m = Fm+1[ūuum|m, Rm|m]

Rm+1|m = Cm+1[ūuum|m, Rm|m]

vvvm+1 =
X

k2A(l)

uk,m+1 + �̂m+1

ūuum+1|m+1 = ūuum+1|m +Km+1

�
vm+1 �

X

k2A(l)

ūk,m+1|m
�

R
m+1|m+1 = R

m+1|m � ⇤(R
m+1|m, robs)R

m+1|m(G
P

GT

P

)R
m+1|m



  Dynamic Stochastic Superresolution (DSS)

Algorithms:

 Diagonal Multi-SPEKF (m-SPEKF) 

 Multi-SPEKF with Gaussian closure (GCSSF) (Branicki&Majda, JCP 2012) 

 Exact mean SPEKF+Monte Carlo covariances (MC SPEKF) Keating, Majda, Smith, MWR 2012 

GCSSF is superior robust algorithm but both m-SPEKF and MC SPEKF can have 
significant filtering skill in appropriate settings 

GCSSF & MC SPEKF m-SPEKF

Covariance in 
Fourier domain 



   Approximate second-order statistics in DSS algorithms

  Gaussian Closure

Q

  assume odd moments zero
  keep turbulent fluxes in the 

        mean

vvv = {ûk, bk, �k,!k} k 2 A(l)

Q



(Two layer) Philips model 

  DSS for estimating poleward eddy heat transport from sparse 

     observations 

Task: estimate a quadratic, sign 
        indefinite quantity from sparse 
        observations of the ocean surface

Heat flux



  DSS for estimating poleward eddy heat transport from sparse 

     observations 

stream EOF 

Partial observations

SPEKF SPEKF SPEKF SPEKF



  DSS for uncorrelated modes in the aliasing set

Good “Black swan” 
detection with 

GCSSF

“Black swan”
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DSS in nonlinear turbulent spatially extended

systems

Performance of DSS algorithms on TBHi model and MMT
model

Lecturer: Chenyue WU
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From M. Branicki and A. J. Majda, “Dynamic Stochastic
Superresolution of sparsely observed turbulent systems”



Overview



Truncated Burgers-Hilbert (TBHi) equation

inviscid Burgers-Hopf equation with dispersive terms
added via Hilbert transform

ut +
1

2
(u2)x = �H [u]

H is defined by: Ĥ [f ](k) = �i sgn(k)f̂ (k). in Fourier space.

Truncated form

(u�)t +
1

2
P�(u

2
�)x = �H [u�]



TBHi (u�)t +
1
2P�(u2

�)x = H [u�]

energy-conserving

near-equipartition of energy



TBHi (u�)t +
1
2P�(u2

�)x = H [u�]

Sparse observation network: P = 3, Ñ = 105, M̃ = 35.

A(1) = {1,�34, 36}. energy E = (0.017, 0.003, 0.003).
decorrelation time �corr = (3.5, 0.1, 0.1).



MMT equation

MMT equation

iut = |⇥x |
1
2u + �|u|2u � iAu + F

Here, we consider the case with the focusing nonlinearity, � = �1,
which induces spatially coherent ‘solitonic’ excitations at random
spatial locations.



MMT iut = |�x |
1
2u � |u|2u � iAu + F

forced and dissipative

dispersive

decaying energy spectrum



MMT iut = |⇥x |
1
2u � |u|2u � iAu + F

Sparse observation network: P = 4, Ñ = 4000, M̃ = 1000.

A(15) = {15,�985, 1015,�1985}.
E = (3.5, 0.3, 0.15, 0.005)⇥ 10�3. �corr = (1, 0.015, 0.01)



parameter estimate for DSS

How do we choose the parameter for DDS algorithm?

Actually, only rough estimates for these parameters are needed to
achieve nearly optimal DSS skill.



parameter estimate for DSS

The parameters in SPEKF are estimated through the linear
regression to the climetology.

We have the Mean Stochastic Model (MSM)

and set:
�̂k = �MSM

k , ⇥̂k = ⇥MSM
k , b̂k = 0

We set:



Robustness of DSS algorithms to parameter uncertainties

RMS error and pattern correlation for the TBHi system as a
function of the mean damping parameters in the forecast models.



RMS error and pattern correlation for the TBHi system
as a function of observation time



Comparison of the DSS results and one-mode filtering for
recovering primary mode u1 of TBHi



Path-wise example of DSS for the primary mode u1
recovered from the aliased signal from THBi system
involving u1, u�34, u36



RMS error and pattern correlation for the MMT system
as a function of observation time



Path-wise example of DSS for the primary mode u1
recovered from the aliased signal from MMT system
involving u15, u�985, u1015, u�1985



Performance of DSS
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