CSCAMM-DAS13 — Lecture 3

Effective assimilation of precipitation (Guo-Yuan Lien, Kalnay,
Miyoshi, Tellus, 2013)

Forecast sensitivity to observations (Kalnay et al, 2012, Ota et al.,
2013, Tellus, 2013)
 “Proactive Quality Contro
Application of forecast sensitivity to data assimilation (Yang and
Kalnay, in progress, thanks to Enomoto).

Estimation of surface fluxes as evolving parameters (Kang et al,

2011, 2012, JGR)

III

Guo-Yuan Lien, Shu-Chih Yang, Yoichiro Ota, T. Miyoshi, Ji-Sun Kang
and Eugenia Kalnay
UMD Weather-Chaos Group: Kayo Ide, Brian Hunt, Ed Ott,

and students (Guo-Yuan Lien, Yan Zhou, Adrienne Norwood, Erin
Lynch, Yongjing Zhao, Daisuke Hotta, Travis Sluka)

Also: Y Ota, Juan Ruiz, C Danforth, M Pena, M Corazza, A. Carrassi




Effective Assimilation of Precipitation
(Guo-Yuan Lien, E. Kalnay and T Miyoshi)

Assimilation of precipitation has been done by changing the moisture Q in
order to make the model “rain as observed”.

Successful during the assimilation: e.g. the North American Regional
Reanalysis had perfect precipitation!

However the model forgets about the changes soon after the assimilation
stops!

The model will remember potential vorticity (PV).

EnKF should modify PV efficiently, since the analysis weights will be
larger for an ensemble member that is raining more correctly, because it
has a better PV.

However, 5 years ago, we had tried assimilating precipitation observations
in a LETKF-SPEEDY model simulation but the results were POOR!

Big problem: precipitation is not Gaussian.
We tried a Gaussian transformation of precipitation and it worked!



How do we transform precipitation y to a Gaussian y;,...?
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(@) Analysis (b) Forecast
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« Main result: with at least 10 ensemble members raining in order
to assimilate an obs, updating all variables (including vorticity),
with Gaussian transform, and rather accurate observations
(20% errors), the analyses and forecasts are much improved!

« Updating only Q is much less effective.

 The 5-day forecasts maintain the advantage.




Averaged RMS forecast errors: U (m/s)

Forecast time (h)

NH TR SH
(30~90N) (30S~30N) (30~90S)
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One year of
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forecasts

The model remembers the impact of pp assimilation

in the SH, NH and tropics!



RMS analysis errors: U (m/s)

Raobs
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If we assimilate only rain the results are much worse!
We need to assimilate both rain and no rain!



RMS analysis errors: U (m/s)
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The impact of the Gaussian Transform is important
with large observation errors (50% rather than 20%).
The impact of GT50% is almost as good as GT20%.
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Vorticity errors and corrections

Shaded: (PPt_m1l0 - Raobs)
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There is no vorticity information in the pp observations, but
the LETKF clearly knows about the vorticity errors



How about real observations?
We will use TRMM/TMPA satellite estimates
(from G. Huffman) with the NCEP GFS

TRMM 3B42 Zero—Prcp Probability (%) [All Seasons]
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TRMM/TMPA: 14 years of data, 50S-50N, 3hrs, 0.5 deg



TRMM/TMPA (data from G. Huffman)

TRMM 3B42 Prcp Rote (mm/h) [CDF = 90%, AII Seosons]
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TRMM/TMPA: 14 years of data, 50S-50N, 3hrs, 0.5 deg



Summary for assimilation of precipitation

The model remembers potential vorticity (dynamics), does not
remember moisture changes, or even temperature.

For this reason, when using nudging, or variational assimilation
of precipitation to change Q and T, the model “forgets” this
information and returns to the original forecast.

EnKF has a better chance to assimilate potential vorticity by
giving higher weights to ensemble members with good precip.

In addition, EnKF has the advantage of not requiring model
linearization, a problem for variational systems.

We found that EnKF with a Gaussian transformation of
precipitation assimilates rain info and remembers it during the
forecast.

Requiring at least several ensemble forecasts to have Rain>0
allows the effective assimilation of both rain and no rain.
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Promising new tools for the LETKF

Forecast Sensitivity to Observations and “proactive QC”
(with Y Ota, T Miyoshi, J Liu, and J Derber)

* This project was started by NCEP findings of the “5-day skill
dropouts”

 Asimpler, more accurate formulation than Liu and Kalnay (2008) for
the Ensemble Forecast Sensitivity to Observations (EFSO, Kalnay et
al., 2012, Tellus).

 Otaetal., 2013 tested it with the NCEP EnSRF-GFS operational
system using all operational observations.

* Allows to identify “bad observations” after 12 or 24hr, and then
repeat the data assimilation without them: “proactive QC”.
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The NCEP 5-day skill dropout problem
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Ensemble Forecast Sensitivity to Observations
“Adjoint sensitivity without adjoint” (Liu and K, 2008, Li et al., 2010)

Here we show a simpler, more accurate formulation
(Kalnay, Ota, Miyoshi: Tellus, 2012)
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Ensemble Forecast Sensitivity to Observations
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Langland and Baker (2004), Gelaro, solve this with the adjoint:

Ae” = [(y - H(X;, ) TKTMT(% +€, )

This requires the adjoint of the modelM”and of the data
assimilation system KT(LangIand and Baker, 2004)



Ensemble Forecast Sensitivity to Observations

Langland and Baker (2004):
7
Ae’ = | MK(y - Z(x; )] (e, +¢,)

— I:(y - H(Xf)|—6):|7 KTMT(eflo + ez|—6)

With EnKF we can use the original equation without “adjointing:
Recall that K= ].)Q,HT].{_1 =1 /(K— 1)}(a}(aTHTR_1 so that
MK =MX‘X“H))R'/(K-1)=X/ Y'R'/(K-1)
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This uses the available nonlinear forecast ensemble products.



Tested ability to detect a poor quality ob impact on the
forecast in the Lorenz 40 variable model

Observation impact from LB( ) and from ensemble sensitivity ( )
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The localization center point for observation impact estimate is now moved
with the horizontal wind: an approximation




Impact of dropsondes on a Typhoon
(Kunii et al. 2012)
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Ota et al. 2013: Applied EFSO to NCEP GFS/EnSRF
using all operational observations. Determined
regional 24hr “forecast failures”

» Divide the globe into 30x30° regions

 Find all cases where the 24hr regional forecast error
is at least 20% larger than the 36hr forecast error
verifying at the same time, and

* where the 24hr forecast has errors at least twice the
time average.

* |dentify the top observation type that has a negative
impact on the forecast.

 Found 7 cases of 24hr forecast



24-hr forecast error correction (Ota et al.)
- identified 7 cases of large 30°x30° regional errors,
- rerun the forecasts denying bad obs.
- the forecast errors were substantially reduced
- this could be applied to improve the 5-day skill dropouts
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“Proactive” QC: Bad observations can be identified
by EFSO and withdrawn from the data assimilation

[ B DU I = [ B [ ]
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After identifying MODIS polar winds producing bad 24 hr
regional forecasts, the withdrawal of these winds reduced
the forecast errors by 39%, as projected by EFSO.



Other applications: Impacts of
Observing Systems

AIRS Observation impact per 1 observation [moist total energy.Jkg AIRS Observation impact per 1 observation [dry fotal energy.J
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The EnKF formulation is nonlinear and thus allows computing Moist
Total Energy and estimate more accurately the impact of the channels
on the moisture forecast. Adjoint formulation needs TLM.



Summary

The new EFSO formulation works well and uses available
EnKF products.

It can be used to detect observations that give bad regional
12hr or 24hr forecasts.

We can then repeat the data assimilation without the bad obs,
a powerful tool for a “proactive” QC and monitoring.

Operationally, it should be possible to accumulate flawed
observations with detailed information about the atmospheric
characteristics and how the observations were used.

This should give enough information to the observation model
developers to improve the algorithms and avoid similar
problems.



Promising new tools for the LETKF

Application of ensemble forecast sensitivity to data
assimilation

(Shu-Chih Yang, E. Kalnay, with thanks to T. Enomoto)
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Ensemble Sensitivity: Application to Data
Assimilation and the Spin-up Problem

Assume we are in a window of the LETKF with an ensemble of K
members

b a
Xi,t T M(Xi,t—l)
Since the window is short,

b b =b
ox;, =X/, —X, = M(0x],_,)

it
Define the vectors of analysis and forecast perturbations:

b b b
X7, :[5Xf,t_1,...,5xj‘{’t_l]; X, :[ﬁxl’t,...ﬁxl{,t]
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We want to find the linear combination of analysis
perturbations that will grow fastest (Singular Vectors):

5X?—1 — X?—lp; 5Xf — Xfp

with optimal coefficients P = [pt,19°'°°9pt,K]

We can use the equation in Enomoto et al (2007)
(see derivation in Yang and Kalnay, 2013):

XLCXD) (X[ C.X)p=Ap
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We tested this with a QG model starting with a random
ensemble that satisfies the B,y .-

The initial optimal perturbation after only 6hr grows into a final
perturbation after 12 hrs:

Ana Err vs. IES_Ens1 (t=1) Back_Err vs. FES_Ens1 (t=2)
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Is this fast growing perturbation related to the background errors?
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We tested this with a QG model starting with a random
ensemble that satisfies the B,y .-

The initial optimal perturbation after 6hr grows into a final
perturbation after 12 hrs:

Ana_Err vs. IES_Ensl (t=1)
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We can use the method of Kalnay and Toth (1994):
“Removing growing errors in the analysis cycle”

We improved the first guess by finding /,[ such that
O-F+uG)LG

Flg. 1: Schemallc for the
G adjustment of the first guess

F towards the cbservations Q
' in the direction of the growing
) errors Q.

~
L a
* .
-



We used one BV as the growing mode G, and found ,U

locally every 10X10 degrees, and interpolated in between.

The results showed a remarkable improvement in the
forecasts!

We could use the SVs as the growing modes.



9th International Carbon Dioxide Conference
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Estimation of Surface CO, A

Fluxes from Atmospheric
Data Assimilation
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AT LETKF-C with SPEEDY-C
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= Model: SPEEDY-C (Molteni, 2003; Kang, 2009)
a Spectral AGCM model with T30L7

a Prognostic variables: U, V, T, g, Ps, C
~ C (atmospheric CO,): an inert tracer

a Persistence forecast of Carbon Fluxes (CF), no observations

» Simulated observations
a Rawinsonde observations of U, V, T, q, Ps
a Ground-based observations of atmospheric CO,
~ 18 hourly and 107 weekly data on the globe

a Remote sensing data of column mixing CO,
. AIRS whose averaging kernel peaks at mid-troposphere

. GOSAT whose averaging kernel is nearly uniform throughout the
column

» Initial condition: random (no a-priori information)

= 20 ensembles
KIAPS B
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IAI‘\‘;*‘ face flux estimation within EnKF
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B Parameter estimation using state vector augmentation

X |: model state vector ggENELTNE Forecast
X’ = (U V. T qPs C) AR U,V, T, g, Ps, C
CF |: surface CO, flux
B B LETKF (analysis)
o Append CF UV, T,q,Ps, C,CF

0 Update CF as a part of the data assimilation processes

o Multivariate analysis with a localization of the variables (Kang
et al. 2011, JGR)

CF C

CF
C

Schematic plots of background
error covariance matrix P° =>»

without “variable localization” (left)
and with it (right)

es
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_ CO, transport within CO, transport within
|][| wind ) along assimilation window ["] wind ) a short window
:’_ TS N )
/ / \ /
| e S | )"
I | e o o 1

* Grid point *

CO, sink CO, source °f @ model CO, sink CO, source

B A short assimilation window reduces the attenuation of
observed CO, information because the analysis system can
use the strong correlation between C and CF before the

transport of C blurs out the essential information of CF
forcing

m \We may not be able to reflect the optimal correlation
between C and CF within a long assimilation window, which
can introduce sampling errors into the EnKF analysis
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44 \ LETKF-C with NCAR CAM3.5

|

= Model: CAM 3.5
a Finite Volume dynamical core

a 2.5°%1.9° of horizontal resolution with 26 layers in the vertical
a C (atmospheric CO,) is an inert tracer
a Persistence forecast of CF

= Simulated observations with real observation coverage
a Conventional data for U, V, T, g, Ps

a Ground-based observations of atmospheric CO,
+ ~10 hourly and ~100 weekly records on the globe

a Remote sensing data of column mixing CO,
« AIRS whose averaging kernel peaks at mid-troposphere

= Initial conditions: random (no a-priori information)
= 64 ensembles
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C A LETKF-CAM3.5 CF analysis

|

B Time series of surface CO, fluxes and
atmospheric CO, concentration over Europe
(observation-rich area)

(a) Surface CO, fluxes over EUR (b) Atmospheric CO, over EUR
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\_Summary of LETKF-C carbon fluxes

m We succeeded in estimating surface CO, fluxes with the advanced
simultaneous analysis system of LETKF-C, even without a-priori
information (OSSEs with SPEEDY model)

0 Localization of the variables (Kang et al., 2011, JGR)

o Advanced data assimilation techniques such as adaptive

multiplicative and additive inflation, vertical localization of column
mixing CO, data (Kang et al., 2012, JGR)

o EnKF has better performance with a short window

— CO, observations may be able to provide some information to distant CF,
but it becomes blurred.

m On-going work of LETKF-C with CAM3.5
o OSSEs with real observation coverages has been examined
o Preliminary results are encouraging.
B The same methodology has been applied to estimating
surface heat, moisture, and momentum fluxes
0 Results are promising. (Kang et al., 2013, in prep)
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m We succeeded in estimating surface CO, fluxes with the advanced
simultaneous analysis system of LETKF-C, even without a-priori
information (OSSEs with SPEEDY model)

0 Localization of the variables (Kang et al., 2011, JGR)

o Advanced data assimilation techniques such as adaptive

multiplicative and additive inflation, vertical localization of column
mixing CO, data (Kang et al., 2012, JGR)

o EnKF has better performance with a short window

— CO, observations may be able to provide some information to distant CF,
but it becomes blurred.

m On-going work of LETKF-C with CAM3.5
o OSSEs with real observation coverages has been examined
o Preliminary results are encouraging.
B The same methodology has been applied to estimating
surface heat, moisture, and momentum fluxes
0 Results are promising. (Kang et al., 2013, in prep)
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EnKF Is a newer, much simpler technology.

There is much more potential not yet exploited or
not even explored such as:
— Estimation and correction of model errors and
parameters
— Estimation of observation errors
— Reducing growing errors from the initial conditions
— Accelerating spin-up




