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Effective Assimilation of Precipitation 
(Guo-Yuan Lien, E. Kalnay and T Miyoshi) 

•  Assimilation of precipitation has been done by changing the moisture Q in 
order to make the model “rain as observed”. 

•  Successful during the assimilation: e.g. the North American Regional 
Reanalysis had perfect precipitation! 

•  However the model forgets about the changes soon after the assimilation 
stops!  

•  The model will remember potential vorticity (PV). 
•  EnKF should modify PV efficiently, since the analysis weights will be 

larger for an ensemble member that is raining more correctly, because it 
has a better PV. 

•  However, 5 years ago, we had tried assimilating precipitation observations 
in a LETKF-SPEEDY model simulation but the results were POOR! 

•  Big problem: precipitation is not Gaussian. 
•  We tried a Gaussian transformation of precipitation and it worked!  
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G−1 (x ) = 2erf −1 (2x −1)

How do we transform precipitation y to a Gaussian ytransf? 

Start with pdf of 
y=rain at every grid 
point. 
 
 “No rain” is like a 
delta function that we 
cannot transform. 
 
We assign all “no 
rain” to the median 
of the no rain CDF. 
 
We found this works 
as well as more 
complicated 
procedures. 
 
It allows to assimilate 
both rain and no rain. 
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Raobs 

Gaussian, 10 members rain,  
20% error, all variables 

Only Q 

•  Main result: with at least 10 ensemble members raining in order 
to assimilate an obs, updating all variables (including vorticity), 
with Gaussian transform, and rather accurate observations 
(20% errors), the analyses and forecasts are much improved!  

•  Updating only Q is much less effective.  
•  The 5-day forecasts maintain the advantage. 
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Raobs 

Q-only 

All variables 

SH 

NH 

TR 
One year of 

5-day 
forecasts 

The model remembers the impact of pp assimilation 
in the SH, NH and tropics! 
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Assimilated only rain 

Assimilated both rain and no rain 

If we assimilate only rain the results are much worse! 
We need to assimilate both rain and no rain! 
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50% errors, No Gaussian Transform 

50% errors, with Gaussian Transform 

20% errors, with GT 

The impact of the Gaussian Transform is important  
with large observation errors (50% rather than 20%). 
The impact of GT50% is almost as good as GT20%. 
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Vorticity errors and corrections 

There is no vorticity information in the pp observations, but 
the LETKF clearly knows about the vorticity errors 



How about real observations? 
We will use TRMM/TMPA satellite estimates  

(from G. Huffman) with the NCEP GFS 

TRMM/TMPA: 14 years of data, 50S-50N, 3hrs, 0.5 deg 



TRMM/TMPA: 14 years of data, 50S-50N, 3hrs, 0.5 deg 

TRMM/TMPA (data from G. Huffman) 



Summary for assimilation of precipitation 

•  The model remembers potential vorticity (dynamics), does not 
remember moisture changes, or even temperature. 

•  For this reason, when using nudging, or variational assimilation 
of precipitation to change Q and T, the model “forgets” this 
information and returns to the original forecast. 

•  EnKF has a better chance to assimilate potential vorticity by 
giving higher weights to ensemble members with good precip. 

•  In addition, EnKF has the advantage of not requiring model 
linearization, a problem for variational systems. 

•  We found that EnKF with a Gaussian transformation of 
precipitation assimilates rain info and remembers it during the 
forecast. 

•  Requiring at least several ensemble forecasts to have Rain>0 
allows the effective assimilation of both rain and no rain. 
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Promising	
  new	
  tools	
  for	
  the	
  LETKF	
  
Forecast	
  Sensi?vity	
  to	
  Observa?ons	
  and	
  “proac?ve	
  QC”	
  

	
  (with	
  Y	
  Ota,	
  T	
  Miyoshi,	
  J	
  Liu,	
  and	
  J	
  Derber)	
  	
  

•  This	
  project	
  was	
  started	
  by	
  NCEP	
  findings	
  of	
  the	
  “5-­‐day	
  skill	
  
dropouts”	
  	
  

•  A	
  simpler,	
  more	
  accurate	
  formulaVon	
  than	
  Liu	
  and	
  Kalnay	
  (2008)	
  for	
  
the	
  Ensemble	
  Forecast	
  SensiVvity	
  to	
  ObservaVons	
  (EFSO,	
  Kalnay	
  et	
  
al.,	
  2012,	
  Tellus).	
  

•  Ota	
  et	
  al.,	
  2013	
  tested	
  it	
  with	
  the	
  NCEP	
  EnSRF-­‐GFS	
  operaVonal	
  
system	
  using	
  all	
  operaVonal	
  observaVons.	
  

•  Allows	
  to	
  idenVfy	
  “bad	
  observaVons”	
  afer	
  12	
  or	
  24hr,	
  and	
  then	
  
repeat	
  the	
  data	
  assimilaVon	
  without	
  them:	
  “proacVve	
  QC”.	
  



The NCEP 5-day skill dropout problem 



Ensemble Forecast Sensitivity to Observations 
“Adjoint sensitivity without adjoint” (Liu and K, 2008, Li et al., 2010) 

Here we show a simpler, more accurate formulation  
(Kalnay, Ota, Miyoshi: Tellus, 2012) 

The	
  only	
  difference	
  between	
  	
  	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  assimilaVon	
  of	
  observaVons	
  at	
  00hr:	
  

	
  

	
  

Ø 	
  ObservaVon	
  impact	
  on	
  the	
  reducVon	
  of	
  forecast	
  error:	
  	
  	
  

(Adapted	
  from	
  Langland	
  
and	
  Baker,	
  2004)	
  

e t |0 = x t |0
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Ensemble Forecast Sensitivity to Observations 
Δe2 = (e t |0

T e t| 0 − e t |−6
T e t |−6 ) = (et | 0

T − e t |−6
T )(et | 0 + e t |−6 )

= (xt |0
f − x t |−6

f )T (e t| 0 + et |−6 )

= M(x0
a − x0|−6

b )⎡⎣ ⎤⎦
T

(e t |0 + e t |−6 ), so that

Δe2 = MK(y − H (x0 |−6
b ))⎡⎣ ⎤⎦

T
(e t |0 + e t |−6 )

Langland	
  and	
  Baker	
  (2004),	
  Gelaro,	
  solve	
  this	
  with	
  the	
  adjoint:	
  

Δe2 = (y − H (x0 |−6
b ))⎡⎣ ⎤⎦

T
K TMT (et | 0 + e t |−6 )

This	
  requires	
  the	
  adjoint	
  of	
  the	
  model	
  	
  	
  	
  	
  	
  	
  and	
  of	
  the	
  data	
  
assimilaVon	
  system	
  	
  	
  	
  	
  	
  (Langland	
  and	
  Baker,	
  2004)	
  KT

MT



Ensemble Forecast Sensitivity to Observations 
Langland	
  and	
  Baker	
  (2004):	
  

Δe2 = MK(y − H (x0 |−6
b )⎡⎣ ⎤⎦

T
(e t |0 + et |−6 )

= (y − H (x0|−6
b )⎡⎣ ⎤⎦

T
KTMT (e t| 0 + e t |−6 )

With	
  EnKF	
  we	
  can	
  use	
  the	
  original	
  equaVon	
  without	
  “adjoinVng”:	
  

Δe2 = MK(y − H (x0 |−6
b )⎡⎣ ⎤⎦

T
(e t |0 + et |−6 )

= (y − H (x0|−6
b )⎡⎣ ⎤⎦

T
R−1Y0

aX t |0
fT (et | 0 + e t |−6 ) / (K −1)

K = PaHTR−1 = 1 / (K −1)X aX aTHTR−1 so	
  that	
  

MK =MX a(X aTH T )R−1 / (K −1) = Xt | 0
f Y aTR−1 / (K −1)

This	
  uses	
  the	
  available	
  nonlinear	
  forecast	
  ensemble	
  products.	
  

Thus,	
  

Recall	
  that	
  



Tested ability to detect a poor quality ob impact on the 
forecast in the Lorenz 40 variable model 

ü The adjoint and the ensemble 
sensitivity give similar observation 
impact on the 24 hr forecast.  

ü The ensemble sensitivity is 
nonlinear and is able to detect bad 
obs for longer forecasts 

ü This was done ignoring EnKF 
localization 

ObservaVon	
  impact	
  from	
  LB(+)	
  and	
  from	
  ensemble	
  sensiVvity	
  (	
  	
  	
  )	
  

1	
  day	
   10	
  days	
  

The	
  localizaVon	
  center	
  point	
  for	
  observaVon	
  impact	
  esVmate	
  is	
  now	
  moved	
  
with	
  the	
  horizontal	
  wind:	
  an	
  approximaVon	
  



Impact of dropsondes on a Typhoon   
(Kunii et al. 2012)	


Estimated observation impact	


TY Sinlaku	


Degrading	


Improving	




Denying negative impact data improves forecast!	


Estimated observation impact	
 Typhoon track forecast is 
actually improved!!	


Improved 
forecast	


36-h forecasts	


TY Sinlaku	


Original 
forecast	


Observed
track	




Ota et al. 2013: Applied EFSO to NCEP GFS/EnSRF 
using all operational observations. Determined 

regional 24hr “forecast failures” 

• Divide the globe into 30x30o regions 

• Find all cases where the 24hr regional forecast error 
is at least 20% larger than the 36hr forecast error 
verifying at the same time, and 

• where the 24hr forecast has errors at least twice the 
time average. 

• Identify the top observation type that has a negative 
impact on the forecast. 

• Found 7 cases of 24hr forecast  



24-hr forecast error correction (Ota et al.) 
- identified 7 cases of large 30ox30o regional errors, 

- rerun the forecasts denying bad obs. 
- the forecast errors were substantially reduced 

- this could be applied to improve the 5-day skill dropouts 

MODIS 



“Proactive” QC: Bad observations can be identified 
by EFSO and withdrawn from the data assimilation 

!

After identifying MODIS polar winds producing bad 24 hr 
regional forecasts, the withdrawal of these winds reduced 
the forecast errors by 39%, as projected by EFSO. 



Other applications: Impacts of 
Observing Systems  

Moist	
  Total	
  Energy	
  (J/Kg)	
   Dry	
  Total	
  Energy	
  (J/Kg)	
  

The	
  EnKF	
  formulaVon	
  is	
  nonlinear	
  and	
  thus	
  allows	
  compuVng	
  Moist	
  
Total	
  Energy	
  and	
  esVmate	
  more	
  accurately	
  the	
  impact	
  of	
  the	
  channels	
  
on	
  the	
  moisture	
  forecast.	
  Adjoint	
  formulaVon	
  needs	
  TLM.	
  



Summary 
•  The new EFSO formulation works well and uses available 

EnKF products. 
•  It can be used to detect observations that give bad regional 

12hr or 24hr forecasts. 
•  We can then repeat the data assimilation without the bad obs, 

a powerful tool for a “proactive” QC and monitoring. 
•  Operationally, it should be possible to accumulate flawed 

observations with detailed information about the atmospheric 
characteristics and how the observations were used. 

•  This should give enough information to the observation model 
developers to improve the algorithms and avoid similar 
problems. 
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Promising	
  new	
  tools	
  for	
  the	
  LETKF	
  
	
  

Applica?on	
  of	
  ensemble	
  forecast	
  sensi?vity	
  to	
  data	
  
assimila?on	
  	
  

(Shu-­‐Chih	
  Yang,	
  E.	
  Kalnay,	
  with	
  thanks	
  to	
  T.	
  Enomoto)	
  



Ensemble Sensitivity: Application to Data 
Assimilation and the Spin-up Problem 
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Assume	
  we	
  are	
  in	
  a	
  window	
  of	
  the	
  LETKF	
  with	
  an	
  ensemble	
  of	
  K	
  
members	
  

xi,t
b = M (xi,t−1

a )

δxi,t
b = xi,t

b − xt
b ≈M(δxi,t−1

a )

Since the window is short, 

Define the vectors of analysis and forecast perturbations: 

Xt−1
a = [δx1,t−1

a ,...,δxK ,t−1
a ]; Xt

b = [δx1,t
b ,...,δxK ,t

b ]
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We want to find the linear combination of analysis 
perturbations that will grow fastest (Singular Vectors):  

δxt−1
a = Xt−1

a p; δxt
b = Xt

bp

with optimal coefficients  p = [pt,1,...., pt,K ]

We can use the equation in Enomoto et al (2007) 
(see derivation in Yang and Kalnay, 2013):  

(Xt−1
aTCIXt−1

aT )−1(Xt
bTCFXt

bT )p = λp
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We tested this with a QG model starting with a random 
ensemble that satisfies the B3D-Var.  
The initial optimal perturbation after only 6hr grows into a final 
perturbation after 12 hrs: 

Is this fast growing perturbation related to the background errors? 
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We tested this with a QG model starting with a random 
ensemble that satisfies the B3D-Var.  
The initial optimal perturbation after 6hr grows into a final 
perturbation after 12 hrs: 

Is this fast growing perturbation related to the background errors? 

YES!!! 



Later in the run, the relationship between the 
final SVs and the forecast errors is even stronger 



We	
  can	
  use	
  the	
  method	
  of	
  Kalnay	
  and	
  Toth	
  (1994):	
  
“Removing	
  growing	
  errors	
  in	
  the	
  analysis	
  cycle”	
  

We	
  improved	
  the	
  first	
  guess	
  by	
  	
  finding	
  	
  	
  	
  	
  	
  	
  such	
  that	
  

O− (F + µG)⊥ G
µ



We	
  used	
  one	
  BV	
  as	
  the	
  growing	
  mode	
  G,	
  and	
  found	
   µ
locally	
  every	
  10X10	
  degrees,	
  and	
  interpolated	
  in	
  between.	
  
	
  
The	
  results	
  showed	
  a	
  remarkable	
  improvement	
  in	
  the	
  
forecasts!	
  
	
  
We	
  could	
  use	
  the	
  SVs	
  as	
  the	
  growing	
  modes.	
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LETKF-C with SPEEDY-C 
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Surface flux estimation within EnKF  
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  Parameter estimation using state vector augmentation 

□  Append CF 
□  Update CF as a part of the data assimilation processes 
□  Multivariate analysis with a localization of the variables (Kang 

et al. 2011, JGR) 

SchemaVc	
  plots	
  of	
  background	
  
error	
  covariance	
  matrix	
  	
  Pb	
  è	
  
without	
  “variable	
  localiza-on”	
  (lef)	
  
and	
  with	
  it	
  (right) 



Assimilation window in LETKF-C 
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 A short assimilation window reduces the attenuation of 
observed CO2 information because the analysis system can 
use the strong correlation between C and CF before the 
transport of C blurs out the essential information of CF 
forcing 

 We may not be able to reflect the optimal correlation 
between C and CF within a long assimilation window, which 
can introduce sampling errors into the EnKF analysis 



Results 
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t  00Z01APR	
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  DA 
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  aMer	
  one	
  year	
  of	
  DA 



LETKF-C with NCAR CAM3.5 
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LETKF-CAM3.5 CF analysis 
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LETKF-CAM3.5 CF analysis 
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 Time series of surface CO2 fluxes and 
atmospheric CO2 concentration over Europe 
(observation-rich area) 



Summary of LETKF-C carbon fluxes 

41 

 We succeeded in estimating surface CO2 fluxes with the advanced 
simultaneous analysis system of LETKF-C, even without a-priori 
information (OSSEs with SPEEDY model) 
□  Localization of the variables (Kang et al., 2011, JGR) 
□  Advanced data assimilation techniques such as adaptive 

multiplicative and additive inflation, vertical localization of column 
mixing CO2 data (Kang et al., 2012, JGR) 

□  EnKF has better performance with a short window 
− CO2 observations may be able to provide some information to distant CF, 

but it becomes blurred. 

 On-going work of LETKF-C with CAM3.5 
□  OSSEs with real observation coverages has been examined 
□  Preliminary results are encouraging. 

 The same methodology has been applied to estimating 
surface heat, moisture, and momentum fluxes 
□  Results are promising. (Kang et al., 2013, in prep) 



Summary of LETKF-C carbon fluxes 
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 We succeeded in estimating surface CO2 fluxes with the advanced 
simultaneous analysis system of LETKF-C, even without a-priori 
information (OSSEs with SPEEDY model) 
□  Localization of the variables (Kang et al., 2011, JGR) 
□  Advanced data assimilation techniques such as adaptive 

multiplicative and additive inflation, vertical localization of column 
mixing CO2 data (Kang et al., 2012, JGR) 

□  EnKF has better performance with a short window 
− CO2 observations may be able to provide some information to distant CF, 

but it becomes blurred. 

 On-going work of LETKF-C with CAM3.5 
□  OSSEs with real observation coverages has been examined 
□  Preliminary results are encouraging. 

 The same methodology has been applied to estimating 
surface heat, moisture, and momentum fluxes 
□  Results are promising. (Kang et al., 2013, in prep) 

THANK	
  YOU	
  VERY	
  MUCH	
  FOR	
  YOUR	
  ATTETION! 



 
EnKF is a newer, much simpler technology.  
There is much more potential not yet exploited or 
not even explored such as:  

–  Estimation and correction of model errors and 
parameters 

–  Estimation of observation errors 
–  Reducing growing errors from the initial conditions 
–  Accelerating spin-up 
– … 

 
 


