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Effective Assimilation of Precipitation 
(Guo-Yuan Lien, E. Kalnay and T Miyoshi) 

•  Assimilation of precipitation has been done by changing the moisture Q in 
order to make the model “rain as observed”. 

•  Successful during the assimilation: e.g. the North American Regional 
Reanalysis had perfect precipitation! 

•  However the model forgets about the changes soon after the assimilation 
stops!  

•  The model will remember potential vorticity (PV). 
•  EnKF should modify PV efficiently, since the analysis weights will be 

larger for an ensemble member that is raining more correctly, because it 
has a better PV. 

•  However, 5 years ago, we had tried assimilating precipitation observations 
in a LETKF-SPEEDY model simulation but the results were POOR! 

•  Big problem: precipitation is not Gaussian. 
•  We tried a Gaussian transformation of precipitation and it worked!  
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G−1 (x ) = 2erf −1 (2x −1)

How do we transform precipitation y to a Gaussian ytransf? 

Start with pdf of 
y=rain at every grid 
point. 
 
 “No rain” is like a 
delta function that we 
cannot transform. 
 
We assign all “no 
rain” to the median 
of the no rain CDF. 
 
We found this works 
as well as more 
complicated 
procedures. 
 
It allows to assimilate 
both rain and no rain. 
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Raobs 

Gaussian, 10 members rain,  
20% error, all variables 

Only Q 

•  Main result: with at least 10 ensemble members raining in order 
to assimilate an obs, updating all variables (including vorticity), 
with Gaussian transform, and rather accurate observations 
(20% errors), the analyses and forecasts are much improved!  

•  Updating only Q is much less effective.  
•  The 5-day forecasts maintain the advantage. 
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Raobs 

Q-only 

All variables 

SH 

NH 

TR 
One year of 

5-day 
forecasts 

The model remembers the impact of pp assimilation 
in the SH, NH and tropics! 
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Assimilated only rain 

Assimilated both rain and no rain 

If we assimilate only rain the results are much worse! 
We need to assimilate both rain and no rain! 
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50% errors, No Gaussian Transform 

50% errors, with Gaussian Transform 

20% errors, with GT 

The impact of the Gaussian Transform is important  
with large observation errors (50% rather than 20%). 
The impact of GT50% is almost as good as GT20%. 
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Vorticity errors and corrections 

There is no vorticity information in the pp observations, but 
the LETKF clearly knows about the vorticity errors 



How about real observations? 
We will use TRMM/TMPA satellite estimates  

(from G. Huffman) with the NCEP GFS 

TRMM/TMPA: 14 years of data, 50S-50N, 3hrs, 0.5 deg 



TRMM/TMPA: 14 years of data, 50S-50N, 3hrs, 0.5 deg 

TRMM/TMPA (data from G. Huffman) 



Summary for assimilation of precipitation 

•  The model remembers potential vorticity (dynamics), does not 
remember moisture changes, or even temperature. 

•  For this reason, when using nudging, or variational assimilation 
of precipitation to change Q and T, the model “forgets” this 
information and returns to the original forecast. 

•  EnKF has a better chance to assimilate potential vorticity by 
giving higher weights to ensemble members with good precip. 

•  In addition, EnKF has the advantage of not requiring model 
linearization, a problem for variational systems. 

•  We found that EnKF with a Gaussian transformation of 
precipitation assimilates rain info and remembers it during the 
forecast. 

•  Requiring at least several ensemble forecasts to have Rain>0 
allows the effective assimilation of both rain and no rain. 
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Promising	  new	  tools	  for	  the	  LETKF	  
Forecast	  Sensi?vity	  to	  Observa?ons	  and	  “proac?ve	  QC”	  

	  (with	  Y	  Ota,	  T	  Miyoshi,	  J	  Liu,	  and	  J	  Derber)	  	  

•  This	  project	  was	  started	  by	  NCEP	  findings	  of	  the	  “5-‐day	  skill	  
dropouts”	  	  

•  A	  simpler,	  more	  accurate	  formulaVon	  than	  Liu	  and	  Kalnay	  (2008)	  for	  
the	  Ensemble	  Forecast	  SensiVvity	  to	  ObservaVons	  (EFSO,	  Kalnay	  et	  
al.,	  2012,	  Tellus).	  

•  Ota	  et	  al.,	  2013	  tested	  it	  with	  the	  NCEP	  EnSRF-‐GFS	  operaVonal	  
system	  using	  all	  operaVonal	  observaVons.	  

•  Allows	  to	  idenVfy	  “bad	  observaVons”	  afer	  12	  or	  24hr,	  and	  then	  
repeat	  the	  data	  assimilaVon	  without	  them:	  “proacVve	  QC”.	  



The NCEP 5-day skill dropout problem 



Ensemble Forecast Sensitivity to Observations 
“Adjoint sensitivity without adjoint” (Liu and K, 2008, Li et al., 2010) 

Here we show a simpler, more accurate formulation  
(Kalnay, Ota, Miyoshi: Tellus, 2012) 

The	  only	  difference	  between	  	  	  	  	  	  	  	  	  and	  	  	  	  	  	  	  	  	  	  	  	  is	  the	  assimilaVon	  of	  observaVons	  at	  00hr:	  

	  

	  

Ø 	  ObservaVon	  impact	  on	  the	  reducVon	  of	  forecast	  error:	  	  	  

(Adapted	  from	  Langland	  
and	  Baker,	  2004)	  
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Ensemble Forecast Sensitivity to Observations 
Δe2 = (e t |0
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Langland	  and	  Baker	  (2004),	  Gelaro,	  solve	  this	  with	  the	  adjoint:	  

Δe2 = (y − H (x0 |−6
b ))⎡⎣ ⎤⎦

T
K TMT (et | 0 + e t |−6 )

This	  requires	  the	  adjoint	  of	  the	  model	  	  	  	  	  	  	  and	  of	  the	  data	  
assimilaVon	  system	  	  	  	  	  	  (Langland	  and	  Baker,	  2004)	  KT

MT



Ensemble Forecast Sensitivity to Observations 
Langland	  and	  Baker	  (2004):	  

Δe2 = MK(y − H (x0 |−6
b )⎡⎣ ⎤⎦

T
(e t |0 + et |−6 )
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T
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With	  EnKF	  we	  can	  use	  the	  original	  equaVon	  without	  “adjoinVng”:	  
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(e t |0 + et |−6 )

= (y − H (x0|−6
b )⎡⎣ ⎤⎦

T
R−1Y0

aX t |0
fT (et | 0 + e t |−6 ) / (K −1)

K = PaHTR−1 = 1 / (K −1)X aX aTHTR−1 so	  that	  

MK =MX a(X aTH T )R−1 / (K −1) = Xt | 0
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This	  uses	  the	  available	  nonlinear	  forecast	  ensemble	  products.	  

Thus,	  

Recall	  that	  



Tested ability to detect a poor quality ob impact on the 
forecast in the Lorenz 40 variable model 

ü The adjoint and the ensemble 
sensitivity give similar observation 
impact on the 24 hr forecast.  

ü The ensemble sensitivity is 
nonlinear and is able to detect bad 
obs for longer forecasts 

ü This was done ignoring EnKF 
localization 

ObservaVon	  impact	  from	  LB(+)	  and	  from	  ensemble	  sensiVvity	  (	  	  	  )	  

1	  day	   10	  days	  

The	  localizaVon	  center	  point	  for	  observaVon	  impact	  esVmate	  is	  now	  moved	  
with	  the	  horizontal	  wind:	  an	  approximaVon	  



Impact of dropsondes on a Typhoon   
(Kunii et al. 2012)	

Estimated observation impact	

TY Sinlaku	

Degrading	

Improving	



Denying negative impact data improves forecast!	

Estimated observation impact	 Typhoon track forecast is 
actually improved!!	

Improved 
forecast	

36-h forecasts	

TY Sinlaku	

Original 
forecast	

Observed
track	



Ota et al. 2013: Applied EFSO to NCEP GFS/EnSRF 
using all operational observations. Determined 

regional 24hr “forecast failures” 

• Divide the globe into 30x30o regions 

• Find all cases where the 24hr regional forecast error 
is at least 20% larger than the 36hr forecast error 
verifying at the same time, and 

• where the 24hr forecast has errors at least twice the 
time average. 

• Identify the top observation type that has a negative 
impact on the forecast. 

• Found 7 cases of 24hr forecast  



24-hr forecast error correction (Ota et al.) 
- identified 7 cases of large 30ox30o regional errors, 

- rerun the forecasts denying bad obs. 
- the forecast errors were substantially reduced 

- this could be applied to improve the 5-day skill dropouts 

MODIS 



“Proactive” QC: Bad observations can be identified 
by EFSO and withdrawn from the data assimilation 

!

After identifying MODIS polar winds producing bad 24 hr 
regional forecasts, the withdrawal of these winds reduced 
the forecast errors by 39%, as projected by EFSO. 



Other applications: Impacts of 
Observing Systems  

Moist	  Total	  Energy	  (J/Kg)	   Dry	  Total	  Energy	  (J/Kg)	  

The	  EnKF	  formulaVon	  is	  nonlinear	  and	  thus	  allows	  compuVng	  Moist	  
Total	  Energy	  and	  esVmate	  more	  accurately	  the	  impact	  of	  the	  channels	  
on	  the	  moisture	  forecast.	  Adjoint	  formulaVon	  needs	  TLM.	  



Summary 
•  The new EFSO formulation works well and uses available 

EnKF products. 
•  It can be used to detect observations that give bad regional 

12hr or 24hr forecasts. 
•  We can then repeat the data assimilation without the bad obs, 

a powerful tool for a “proactive” QC and monitoring. 
•  Operationally, it should be possible to accumulate flawed 

observations with detailed information about the atmospheric 
characteristics and how the observations were used. 

•  This should give enough information to the observation model 
developers to improve the algorithms and avoid similar 
problems. 
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Promising	  new	  tools	  for	  the	  LETKF	  
	  

Applica?on	  of	  ensemble	  forecast	  sensi?vity	  to	  data	  
assimila?on	  	  

(Shu-‐Chih	  Yang,	  E.	  Kalnay,	  with	  thanks	  to	  T.	  Enomoto)	  



Ensemble Sensitivity: Application to Data 
Assimilation and the Spin-up Problem 
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Assume	  we	  are	  in	  a	  window	  of	  the	  LETKF	  with	  an	  ensemble	  of	  K	  
members	  

xi,t
b = M (xi,t−1

a )

δxi,t
b = xi,t

b − xt
b ≈M(δxi,t−1

a )

Since the window is short, 

Define the vectors of analysis and forecast perturbations: 

Xt−1
a = [δx1,t−1

a ,...,δxK ,t−1
a ]; Xt

b = [δx1,t
b ,...,δxK ,t

b ]
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We want to find the linear combination of analysis 
perturbations that will grow fastest (Singular Vectors):  

δxt−1
a = Xt−1

a p; δxt
b = Xt

bp

with optimal coefficients  p = [pt,1,...., pt,K ]

We can use the equation in Enomoto et al (2007) 
(see derivation in Yang and Kalnay, 2013):  

(Xt−1
aTCIXt−1

aT )−1(Xt
bTCFXt

bT )p = λp
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We tested this with a QG model starting with a random 
ensemble that satisfies the B3D-Var.  
The initial optimal perturbation after only 6hr grows into a final 
perturbation after 12 hrs: 

Is this fast growing perturbation related to the background errors? 
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We tested this with a QG model starting with a random 
ensemble that satisfies the B3D-Var.  
The initial optimal perturbation after 6hr grows into a final 
perturbation after 12 hrs: 

Is this fast growing perturbation related to the background errors? 

YES!!! 



Later in the run, the relationship between the 
final SVs and the forecast errors is even stronger 



We	  can	  use	  the	  method	  of	  Kalnay	  and	  Toth	  (1994):	  
“Removing	  growing	  errors	  in	  the	  analysis	  cycle”	  

We	  improved	  the	  first	  guess	  by	  	  finding	  	  	  	  	  	  	  such	  that	  

O− (F + µG)⊥ G
µ



We	  used	  one	  BV	  as	  the	  growing	  mode	  G,	  and	  found	   µ
locally	  every	  10X10	  degrees,	  and	  interpolated	  in	  between.	  
	  
The	  results	  showed	  a	  remarkable	  improvement	  in	  the	  
forecasts!	  
	  
We	  could	  use	  the	  SVs	  as	  the	  growing	  modes.	  
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LETKF-C with SPEEDY-C 
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Surface flux estimation within EnKF  
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  Parameter estimation using state vector augmentation 

□  Append CF 
□  Update CF as a part of the data assimilation processes 
□  Multivariate analysis with a localization of the variables (Kang 

et al. 2011, JGR) 

SchemaVc	  plots	  of	  background	  
error	  covariance	  matrix	  	  Pb	  è	  
without	  “variable	  localiza-on”	  (lef)	  
and	  with	  it	  (right) 



Assimilation window in LETKF-C 

36 

 A short assimilation window reduces the attenuation of 
observed CO2 information because the analysis system can 
use the strong correlation between C and CF before the 
transport of C blurs out the essential information of CF 
forcing 

 We may not be able to reflect the optimal correlation 
between C and CF within a long assimilation window, which 
can introduce sampling errors into the EnKF analysis 



Results 
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t  00Z01APR	  
	  	  	  aMer	  3	  months	  of	  DA 

t  00Z01AUG	  
	  	  	  aMer	  7	  months	  of	  DA 

t  00Z01JAN	  
	  	  	  aMer	  one	  year	  of	  DA 



LETKF-C with NCAR CAM3.5 
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LETKF-CAM3.5 CF analysis 
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LETKF-CAM3.5 CF analysis 
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 Time series of surface CO2 fluxes and 
atmospheric CO2 concentration over Europe 
(observation-rich area) 



Summary of LETKF-C carbon fluxes 
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 We succeeded in estimating surface CO2 fluxes with the advanced 
simultaneous analysis system of LETKF-C, even without a-priori 
information (OSSEs with SPEEDY model) 
□  Localization of the variables (Kang et al., 2011, JGR) 
□  Advanced data assimilation techniques such as adaptive 

multiplicative and additive inflation, vertical localization of column 
mixing CO2 data (Kang et al., 2012, JGR) 

□  EnKF has better performance with a short window 
− CO2 observations may be able to provide some information to distant CF, 

but it becomes blurred. 

 On-going work of LETKF-C with CAM3.5 
□  OSSEs with real observation coverages has been examined 
□  Preliminary results are encouraging. 

 The same methodology has been applied to estimating 
surface heat, moisture, and momentum fluxes 
□  Results are promising. (Kang et al., 2013, in prep) 



Summary of LETKF-C carbon fluxes 
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 We succeeded in estimating surface CO2 fluxes with the advanced 
simultaneous analysis system of LETKF-C, even without a-priori 
information (OSSEs with SPEEDY model) 
□  Localization of the variables (Kang et al., 2011, JGR) 
□  Advanced data assimilation techniques such as adaptive 

multiplicative and additive inflation, vertical localization of column 
mixing CO2 data (Kang et al., 2012, JGR) 

□  EnKF has better performance with a short window 
− CO2 observations may be able to provide some information to distant CF, 

but it becomes blurred. 

 On-going work of LETKF-C with CAM3.5 
□  OSSEs with real observation coverages has been examined 
□  Preliminary results are encouraging. 

 The same methodology has been applied to estimating 
surface heat, moisture, and momentum fluxes 
□  Results are promising. (Kang et al., 2013, in prep) 

THANK	  YOU	  VERY	  MUCH	  FOR	  YOUR	  ATTETION! 



 
EnKF is a newer, much simpler technology.  
There is much more potential not yet exploited or 
not even explored such as:  

–  Estimation and correction of model errors and 
parameters 

–  Estimation of observation errors 
–  Reducing growing errors from the initial conditions 
–  Accelerating spin-up 
– … 

 
 


