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Modern Applied Modus Operandi

Theory: Important mathematical guidelines
Qualitative Exactly Solvable Models

Novel Algorithms:
Applications to Real Problems in Science/Engineering
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Exactly Solvable Test Models and NERF Algorithms

Prototype Test Problems which are Nonlinear yet exactly
solvable statistically for filtering multiple time scale systems

Examples: Gravity Waves, Moisture, and Large Scale Flow in
Tropics or Mesoscale, Tracking hazardous pollutants in real time
from partial observations
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What is filtering?

1. Forecast (Prediction) 2. Analysis (Correction)

Umy1im (prior) Us 1im (prior)

Unim (posterior)

! U Umel (posterior)
| true sign;
observation (Vm+1) observation (Vm+1)
tm tmt1 m tmt1

The correction step is an application of Bayesian update

p(um+1|m+1) = p(um+1|m’Vm+1) ~ p(um+1|m)p(vm+1|um+1\m)

Kalman filter formula produces the optimal unbiased posterior
mean and covariance by assuming linear model and Gaussian
observations and forecasts errors.
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Theoretical and Computational Issues:

» Handling nonlinearity! Why not particle filter? Convergence
requires ensemble size that grows exponentially with respect to
the ensemble spread relative to observation errors rather than
to the state dimension per se(Bengtsson, Bickel, and Li 2008).

» How to handle large system? Perhaps N = 10° state variables
(e.g., 200 km resolved Global Weather Model)

» Where is the computational burden? Propagating covariance
matrix of size N x N (6N minutes = 300,000 hours).

» Some successful strategies: Ensemble Kalman filters (ETKF
of Bishop et al. 2001, EAKF of Anderson 2001). Each
involves computing singular value decomposition (SVD).

» However, these accurate filters are not immune from
" catastrophic filter divergence” (diverge beyond machine
infinity) when observations are sparse, even when the true
signal is a dissipative system with "absorbing ball property”.



Main theoretical questions:

1. How to develop simple off-line mathematical test criteria as
guidelines for filtering extremely stiff multiple space-time scale
problems that often arise in filtering turbulent signals through
plentiful and sparse observations?

2. For turbulent signals from nature with many scales, even with
mesh refinement the model has inaccuracies from
parametrization, under-resolution, etc. Can judicious model
error help filtering?

3. Can new strategies and stochastic parameterizations be
developed to reduce model error and improve the filtering as
well as the prediction skills?



Goal: Provide math guidelines and new numerical strategies thru
modern applied math paradigm

Modelling Turbulent Signals
Stochastic Langevin Models

Complex Nonlinear
Dynamical Systems

<—>

Filtering
Extended Kalman Filter
Classical Stability Criteria:

Observability
Controllability

Numerical Analysis

Classical Von-Neumann
stability analysis for
frozen coefficient linear systems




PART I: Filtering Linear Problem

Real Space

Fourier Space

Independent Fourier
Coefficient:
Langevin equation

Fourier Domain
Kalman Filter

Simplest Turbulent Model FT
Constant Coefficient >
Linear Stochastic PDE
A
Innovative
Classical Ensemble Strategy
Kalman Filter Kalman Filter
Y
FT
Noisy Observations >

Fourier Coefficients
of the noisy observations




How to deal with Sparse Regularly Spaced Observations?
ALIASING !

m=25, I=3, k=2, N=5

1 [T 177
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Recall Aliasing Formula:

> Fine mesh: f(x;) = 3 <n Frine (k)€ where xj = jh and

(2N + 1)h = 2r.
> Coarse mesh: f(%X;) = ZIZISM ?Coa,se(f)eib?f where X; = jh and
(2M + 1)h = 2.

> Suppose the coarse grid points X; coincide with the fine mesh
grid points x; at every P = (2N +1)/(2M + 1) fine grid

points.
> Since elk% = (l(tHa(2M+1))% — (il
» We deduce
?coarse(f) = Z ?ﬁne(kj% |£| < /\/]’
ki€ A(£)

where A(¢) ={k: |k| < N,k =0+ q(2M +1),q € Z}



Example: 123 grid pts (61 modes) but only 41 observations (20
modes) available

Physical Space

BN

sparse observations for P=3

Fourier Space

: : e
o ’VK 7% :

aliasing set A(1) = {1,-40,42} for P=3 and M=20

aliasing set A(11) = {11,-30,52} for P=3 and M=20




Stochastically forced advection-diffusion equation

8ug<t, t) _ _88xu(x’ t)+ F(x, t) + M;}@U(X, t) + o(x)W(t)

on a periodic domain 0 < x < 27.
Observations at sparse grid points:

V(% tm) = u(Xj, tm) + 0%, X = jh,(2M + 1)h = 2r.
In Fourier Domain
> din(t) = [(—pk® = ik)bk(t) + Ae™ 8 < pl dt + o dWic(t)
» Equilibrium variance: Ex = 07 /2uk?, decorrelation time

1/pk?.
» Observation at time t,, (apply the aliasing formula):

Oé,m — Z Z\ka,m + 6-2,717 = Gﬁé,m + &Zm
ij.A(é)
where G =[1,1,...,1] and 6§, ~ N(0,r°/(2M + 1)).
D



The Fourier Domain Kalman Filter (FDKF)

The standard Kalman filter algorithm applied to all the disjoint
aliasing sets A(¢) for all 0 < ¢ < M.

Prior Update

B) R@,m+1|m = FKRZ,m\mFZ + Rg,

where
Fe(j,j) = e(_“kJ'2+ikf)At, and
o, KAt
Re(j, J) —5(1—e 7Y, ke A(Y),
2,ukj

Posterior update:

D) By mitmi1 = (T — Kem+1G)Uomi1jm + Kemr1 Ve mi1
E) Rf,m+1|m+1 = (I - Kf,m+1 G)Ré,m+1\ma
F) K@,m—s—l = RZ,m+1\mGT(GRZ,m+1\mGT + ?0)71-



Strongly Damped Approximate Filter (SDAF):
In each aliasing set A(¢) = {ki, ko, ..., kp}, the damping strength
varies enormously (e.g. A(1) = {1, —40,42})

Low wave number ky: e MKAL — O(1),
High wave numbers k;: eTHRAL Ole) k1, 2<j<P.

SDAF algorithm approximates covariance matrix, Ry, 1jm, by block
diagonal covariance matrix

Rkl,m+1|m 0

Rm+1|m = 0 3




Decorrelation time vs

Decorrelation time

observation time:

Decorrelation time v observation time
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ETKEF Filter Divergence (Ensemble size = 150 > N = 123)
Extreme event, Aty = 0.1, E, = k=%/3, P =3,r° =2.05
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SDAF high skill Spontaneous development of extreme event for
Aty =0.1and E, = k53, P =3,r° =2.05

SDAF, <corr>=0.98516 SDAF, at T=1004t, corr=0.95751

true
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In the previous numerical simulation, the results of FDKF
and SDAF yield comparable accuracy, this is true only for
-5/3 spectrum and the given observation time.

We also find that when observation time is shortened and for
equipartition spectrum, FDKF is better than SDAF.

Besides numerical advantage over FDKF, what is the
significant of SDAF?

Can SDAF avoid singularity due to violation of observability?



» Filter stability (Kalman, 1960)
Consider the following discrete time linear filtering problem

Unt1 = Fum+omypr+ 'Eerl
Vm+l = Gum+1 + 0',on+1
The stability of the filter is guaranteed when |F| < 1; for

|F| > 1 stability is satisfied if the pair of operators F, G is
observable.

» Observability: Matrix [G, GF,..., GFP~!] has a full rank.

» In our example, observability in each aliasing subspace with
G =[1,...,1] requires

[1(Fe — Fi) #0,
i#j
where Fj. = e~ (nki+ik)At for adv-diff eqn and

Fi, = e~ (dHK)AL for yniformly adv eqn.



Weakly uniformly damped advection equation £, =1,
Non-observable time At = 27/(2M + 1) = 0.15325, resonantly
forced signal; high skill of SDAF over FDKF

FDKF °=2.05
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Summary of Part I:

» Given (2M + 1) = (2N + 1)/P sparse regular observations,
FDKF reduces a (2N+1)-dim filtering problem to M decoupled
P-dim filtering problems, each with a scalar observation.

» In our assessment, we find that filtering sparsely observed
linear problem with ensemble Kalman filter with ensemble size
larger than the model dimensionality does not guaranteed
convergence solution.

» FDKF suggests that ignoring the cross covariance between
different aliasing sets is not only computationally
advantageous but it also produces more accurate solutions.

» Intuitively, this reduced filter avoid the spurious correlations
between different wave numbers.

» Observability violation can be avoided by further reduction
through strong damping approximation even when the high
mode in the true signal are not strongly damped.



PART I

Radical Filtering Strategy for Nonlinear System

. FT
Stochastically Uncoupled

forced linear PDE Langevin eqn

Replace the Nonlinear terms
with an Ornstein-Uhlenbeck

process
Nonlinear Chaotic FT Coupled nonlinear
Dynamical —| ODE through
Systems nonlinear terms




Filtering turbulent nonlinear dynamical systems

L-96 model (Lorenz 1996), 40-dim, “absorbing ball property”.
duj

5 = W g2y —u+F =0, -1

)\1 N+ KS Tcorr
1.02 | 12 | 5547 | 8.23
1.74 | 13 | 10.94 | 6.704
3.945 | 16 | 27.94 | 5.594

Weakly chaotic
Strongly chaotic
Fully turbulent

5 © o™

F=6 F=8

time
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Online Model Error Estimation Strategy

A simple strategy to cope with model errors for filtering with an
imperfect model nonlinear dynamical system depending on
parameters, b,

du
— = F(u,b
dt ( Y )
is to augment the state variable u, by the parameters ), and adjoin
an approximate dynamical equation for the parameters

db
— g(b).
T g(b)

In hierarchical notation, filtering this augmented system is one way
of estimating

[u] ][]
[v]

[u, blv] = [v]u, ]



Test model for true signal

Consider the following SDE

du(t) _

— —y(t)u(t) +iwu(t) + UW(t) + £(t)

as a test model for filtering with model error.

To generate significant model errors as well as to mimic
intermittent chaotic instability as often occurs in nature, we allow
v(t) to switch between stable (v > 0) and unstable (v < 0)
regimes according to a two-state Markov jump process.

Assume the following observation model:

Vm = u(tm) + 05, om~N(0,r°). (1)



True Signals for Unforced and Forced cases

Unforced system

Il
Forced system

0 50 100 150 200 250 300 350 400 450 500
t



Mean Stochastic Model

The prototype one-mode stochastic mean model
du(t) = | (=5 +iw)u(t) + F(t)|dt + odW(t)

where one fits the parameters using climatological statistical
quantities such as the energy spectrum and correlation time.

This "poor-man” strategy is discussed in Harlim and Majda
Nonlinearity 2008, Comm. Math. Sci. 2010.



Stochastic Parameterized Extended Kalman Filter:

We consider the following canonical model that accounts additive
and multiplicative biases:

du(t) = [(—V(t) +iw)u(t) + F(t)—i—b(t)} dt + odW(t)
db(t) = (—7p +iwp)b(t)dt + opdWp(t)
dvy(t) = —d,(y(t) —A)dt + o dW,(t)

We find stochastic parameters {7y, wp, 05, dy,0,} that are robust

for high filter skill beyond the MSM and in many occasions
comparable to the perfectly specified filter model.

This special form has exactly solvable nonlinear solutions and
moments and we do not need any linearization as in the standard
EKF.



Next, we find the mean (u(t)): (Use the calculus tricks in

Gershgorin-Majda 2008, 2010)

(w(t)) = &) ({ug) — Cov(uo, J(to, 1)) ) e~ et +3Varlen0)

[ (b4 e () b~ Contn, (5, 0))

to

> e—(J(s t))-i-l Var(J(s,t)) ds

+ / eA(1-5) ()= s+ Var(U(s0) g )
to

where

A = -4 + iw,

sse) = | () — ),

and next the cross-covariances ...



SPEKF: Checking first and second ordered statistics

<Re[u]> Var(u)
° o
o 1.4
-0.5 12
1€
-1
1.8 2 2.2 24 2.6 1.8 2 2.2 2.4 2.6
t t
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o
0.2]
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-0.2
-0.4 0
-0.6
-0.8 o -0.1 s
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t t
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07 0
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05 -0.3
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One mode demonstration of the filtered solution:
observed mode
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O observation
posterior mean| _|
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One mode demonstration of the filtered solution:

unobserved parameters
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Canonical Spatially Extended Turbulent Systems

We consider a stochastic PDE with time-dependent damping
Langevin equation for the first five Fourier modes, i.e.,

du(t .
Ucl;f ) = — k() uk(t) + iwgur(t) + o Wi (t) + f(t), k=1,...,5,
and linear Langevin equation with constant damping d for modes
k >5,
duk(t) - . .
b —du(t) + iwkuk(t) + o Wi(t) + fi(t), k> 5.



Turbulent barotropic Rossby wave equation:

(b)

240 245 250 255 260 265 270



Incorrectly specified forcings:

Here, we consider a true signal with forcing given by

fi(t) = Af xexp (i(wf,kt + ¢f,k)>’ (3)

for k =1,...,7 with amplitude A x, frequency wr x, and phase
or k drawn randomly from uniform distributions,

Ari ~ U(0.6,1),
wrk ~ U(0.1,0.4),
¢k~ U(0,2m),
e = %,

and unforced, ?k(t) =0, for modes k > 7. However, we~do not
specify this true forcing to the filter model, i.e., we use f, = 0 for
all modes.



Reduced Filter Domain Kalman Filter for regularly

spaced sparse observation

We consider regularly spaced sparse observations: (2M + 1)
observations of (2N + 1) model grid points. The Fourier
coefficients of the observation model is given as
Um= D Dm+0n,
kEA(L)
where
Al) ={klk =0+ (2M +1)q,q € Z,|¢| < N}
is the aliasing set of wavenumber ¢. (Majda-Grote PNAS 2007)

When the energy spectrum is decaying as a function of k, we can
use the following reduced observation model

A~/ — ~ ~ AO
Vé,m =Vim— E uk,m\m—l = Uym + Om-
ke A(0),k#L



Example: 123 grid pts (61 modes) but only 41 observations (20
modes) available

Physical Space

sparse observations for P=3

Fourier Space

o g

I
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-61 -20 20

aliasing set A(1) = {1,-40,42} for P=3 and M=20

aliasing set A(11) = {11,-30,52} for P=3 and M=20




Incorrectly specified forcings, observed only 15

observations of 105 grid points
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Table of RMSE for the SPDE test case with

intermittent burst of instability

Forcing unforced case | correct forcing | incorrect forcing
re 0.2 0.3 0.5
perfect filter 0.35 0.39 0.45
MSM 0.39 0.48 0.73
MSM¢_q - - 1.17
SPEKF-C 0.38 0.44 0.59
SPEKF-M 0.36 0.42 0.79
SPEKF-A 0.39 0.46 0.60




Canonical Model for Midlatitude Geophysical Flows:

The dynamical equations for the perturbed variables are:

Jq1 oq 2,101 8.

Bt +J(¢1,ql)+U—ax +(’B+kdu)—ax +vV°q1 = 0
992 0q2 2, 02 8 2 .
B + J(22, q2) U@x + (8 — k3U) B + Ve + KV = 0

where g; is the quasi-geostrophic potential vorticity given as

k2
g = By+V+ ?d(¢3—j — 1)

with 7 = V4, kg = v/8/Lg.



In the two-layer case, the barotropic vertical and baroclinic modes
are defined as v, = (¥1 +12)/2 and e = (Y1 — ¢2)/2,
respectively.
Notice that the barotropic mode dynamical equation,

Iqp O

It + J(¥b, qb) + ’BE + £V + vV80q,

2
+(J(wc, ge) + Uavach

- mv%c) ~0

is numerically stiff when k3 is large (ocean case).
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Stochastic Models for Filtering the barotropic mode:

Recall that

Jqp Oy 2 8 . _
It + J(¥p, qp) + ﬁﬁ + &V Yy +vV°oqp + (barocllmc term) =0

where qp = By + V2.

Poorman’s stochastic models: replace the nonlinear terms and
all of the baroclinic components by Ornstein-Uhlenbeck processes.
Discrete Fourier Transform:

0= 3 Bt

k.0
Thus, each horizontal mode has the following form
dip(t) = (—d + iw)(t)dt + f(t)dt + odW(t)

and our task is to parameterize d,w, (t),o?



Statistical Quantities: Climatological variances of

the barotropic mode

atm (F=4)
= = = ocn (F=40)
—€— atm (F=4) with stronger bottom drag

Relative Variance in %

mode

“Atmospheric” case (k3 is small) and “oceanic” case (k3 is large).



Statistical Quantities: Histogram “marginal pdf’s”

atm, mode 1: (0,1) ocn, mode 1: (1,0)
3
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Statistical Quantities: Correlation functions

atm, mode 1: (0,1) ocn, mode 1: (1,0)
1 1
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Mean Stochastic Models: parameterize d,w, f, o

We set f(t) to be a constant equals to the climatological mean

(1) (long time average).

MSM2 We use the linear dispersion w, and we fit the damping and
noise strengths to the spectrum and decorrelation time

~ o
V. = —
ar(d) = o
Re[Teor] L /OO Re[C(r)]dr = *
rr] = = T)|aT =
CO Var() Jo d
MSML1 Ignore the linear dispersion and solve the following
2
A o
V. = —
1 o 1
Tcorr = = / C(T)dT = "
Var(v) Jo d+iw



Local least squares EAKF (Anderson 2003)

Approximate the prior error covariance matrix by ensemble
covariance.

g o time
t t+6 hrs

How many ensemble member? How to avoid ensemble collapse
and spurious correlations due to finite ensemble size?
Computationally, EAKF requires extensive tunings of ensemble
size, local box size, covariance inflation, and in the ocean case,
integration time step need to be reduced.



Longer deformation radius case (“atmospheric”

regime).

360BS F=4, T,,,=0.25, 10=0.17113, K=48, r=0.2, L=14 10

- == tue
—8— LLS-EAKFE

10° 4

Spectra
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? ‘obs

TRUE AT T=2500 0OBS, T ,.=0.25, RO=0.17113

SPEKF, [=0.25 RO=0.17113 LLS-EAKF, T,,.=0.25, RO=0.17113




Shorter deformation radius case (“oceanic” regime).

36 OBS F=40, T,,,=0.02, 10=17.3655, K=48, 1=0.2, L=14

SPEKF
—e— MSML
16| .

Spectra




TRUE AT T=100 OBS, T,,=0.02, RO=17.3655

5 5
4 4
3 3
2 2
1 i 1
1 2 3 4 5 1

SPEKF, T,,:=0.02, RO=17.3655 LLS-EAKF, T =0.02, RO=17.3655




1. MSM: We introduce reduced stochastic models through
replacing the nonlinearity and baroclinic components with
Ornstein-Uhlenbeck process for filtering purpose. This
reduced poor man's strategy is numerically very cheap and
accurate in a regime when the dynamical systems is strongly
chaotic and fully turbulent.

2. SPEKF: We introduce a paradigm model for “online” learning
both the additive and multiplicative biases from observations
beyond the MSM. This model is analytically solvable such
that NO LINEARIZATION is needed when Kalman filter

formula is utilized.



Stochastic Super-resolution:
Estimating turbulent heat transport in
the ocean using satellite altimetry

Characteristic lengthscales (km)

- —— Zonal resolution EEREES SRPEE Yoo
rl = = = Meridional resolution tomeetee e 1
| - =+ - Deformation wavelength |: - -+ ...
----- Observed eddy diameter|:

-80 -60 -40 -20 0 20 40 60 80
Latitude (degrees)

“New methods for estimating poleward eddy heat
transport using satellite altimetry”

Shane R. Keating, Andrew J. Majda & K. Shafer Smith
J. Phys. Oceanogr. 2011 (submitted)



Estimating turbulent heat transport

-2 16
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Key challenges:
* High dimensionality
e Sparseness in vertical space

e Sparseness in horizontal space
* Sparseness in time
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