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QOutline

O Filtering
o Filtering: obtaining the best statistical estimation of a nature system from the partial
observations.
o Fourier Domain Kalman Filter (FDKF) with regularly spaced sparse observations.
Q@ Filtering with Superparameterization
o linear, analytically solvable model,
o model error coming from finite discrete approximations.
O Filtering with Dynamic Stochastic Superresolution (DSS)

o nonlinear model,
o using cheap stochastic models to forecast the true nonlinear dynamics.

@ Test Models for Filtering with Superparameterization, John Harlim and A. J. Majda, submitted, SIAM J.
Multiscale Modeling and Simulation, September 9, 2012.

@ Dynamic Stochastic Superresolution of sparseley observed turbulent systems, M. Branicki and A. J.
Majda, submitted, Journal of Computational Physics, May 17, 2012.

@ New methods for estimating poleward eddy heat transport using satellite altimetry, S. Keating, A. J.
Majda and K. S. Smith, Monthly Weather Review, February 9, 2012.
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Basic Notions of Filtering and Test Models for Filtering
with Superparameterization

© Filtering the Turbulent Signal
o Kalman filter
o Fourier Domain Kalman Filter (FDKF)
o FDKF with regularly spaced sparse observations

e Test Models for Superparameterization
@ Test model
@ Numerical implementation
o Small-scale intermittency
o Superparameterization
@ Other closure approximations

© Filter Performance on Test Models
@ Stochastically forced prior models
o Controllability
o Remarks
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Filtering the Turbulent Signal

Kalman filter

|. Filtering the Turbulent Signal

1.1. Kalman Filter
o True signal n11 € RV, which is generated from

‘ L_jm+1 = Fim + §m+1 "

o Observation v, 11 € RM:

| Vi1 = Gllmi1 + 5511 |

where matrix G € RM*N and 59 = {52} is an M-dimensional Gaussian while
. - ’
noise vector with zero mean and covariance

R = (37, @ (G3)7) = {(F2m(37m) )} = {801 = ))r°}

@ Forecast model:

M M
m+1 =F + Im+1 |

where FM € RNXN and 3 is an M-dimensional Gaussian while noise vector with

zero mean and covariance
M M M\T
R™ = (Um ®(0m) >
Goal: Estimate the true state: i1 € RV from the imperfect prediction model and
the observations of the true signal.
SP and DSS for
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Filtering the Turbulent Signal

Kalman filter

1. Forecast (Prediction)

Uy (Posterior) Lon (rier)

true si,

observation (vm])

2. Analysis (Correction)

U] (PPIOT)
/ - +1 (posterior)

observation (vm +1)

tm 41

Step 1. Forecast:
Run the forecast model from step m to m+ 1,

=M _ M =M
Upmit|m = F“m|m + a1

Compute the prior mean and covariance

um+1|m =F um\m’
M M pM M\T M
RM im = FMRM (FM)T 4 RM.

Andrew J. Majda

Step 2. Analysis:
Compute posterior mean and variance

= _ =M - =M
Unmt1im+1 = YUm+1|m + Kmt1(Vint1 — Gum+l\m)’
M _ M
Rm+1|m+1 - (I — Kmt1 G)Rerl‘m,
where Kpy1 is the Kalman gain matrix
M T
K Rm+1|mG
m+1l = M T 5"
GRm+1|mG +R
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Filtering the Turbulent Signal
Fourier Domain Kalman Filter (FDKF)

1.2. Fourier Domain Kalman Filter (FDKF).
Canonical Filtering Problem: Plentiful Observations

9 1) = £(L e, £) + o)W (D), dERS,
ot oOx
‘7(va tm) = GL—j(XJ7 tm) + Ujo,m'

The dynamics is realized at 2N + 1 discrete points {x; = jh,j = 0,1,...,2N} such
that (2N + 1)h = 27. The observations are attainable at all the 2N + 1 grid points.
The observation noise 09, = {aﬁm} are assumed to be zero mean Gaussian variables
and are spatial and temporal independent.

Finite Discrete Fourier expansion of i(x, t):

Qg tm) = > G(tm)e™9, by =0,
[kI<N
h 2N )
B(tm) = o D ii(xg, tm)e ™.
j=0

Fourier Analogue of the Canonical Filtering Problem:
O (tme1) = Frl(tm) + Grmits
k(tm) = Glig(tm) + 5 -

Then the original (2N + 1)s x (2N + 1)s filtering problem reduces to study 2N + 1
independent s X s matrix Kalman filtering problems.
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Filtering the Turbulent Signal

FDKF with regularly spaced sparse observations

1.3. FDKF with regularly spaced sparse observations.
Assume there are N model grid points. We consider the observations at every p
model grid points such that the total number of observation is M with M = N/p.
Sparse Regularly Spaced Observations in Fourier Space is expressed as follows:

Gk (tmr1) = Frlk(tm) + Fromi1s |k < N/2,
Ui(tm) = G Z i (tm) + 7 s [ < M/2,
ke A(l

where the aliasing set of wavenumber / is defined as
A(l)={k:k=1+Mq|lqeZ, |kl <N/2}

Fourier space
aliasing set of A[(2,1)

Physical space

o D [e]
y k,

° o

[o] [e]

s s T 5
Figure 1: 5 x 5 ngular subset of the 20 x 20 model mesh so that every

P = 4 model mesh node is observed. Here N = 20 and M = 5. There are 25 aliasing sets in all:
A(i,j) with i, j € Z and —2 < i, j < 2. All primary modes lie inside the region —2 < k., k, < 2.
SP and DSS for Fi
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Filtering the Turbulent Signal

FDKF with regularly spaced sparse observations

Covariance matrixin physical domain Covariance matrixin Fourier domain

Ryy Rz Riz Ry Rys Ryg Ryz Ryg
Rzl RZZ R23 RZ4' RZE RZE R27 RZS
R31 Rlz R33 R34' R35 R35 R37 Rls
Ry Ry Rz Ry Rus Ryg Ryz Ry
RSI RSZ R53 R54' RSE REE R57 RSS
RGI REZ R53 R54' RGE RGE RG7 RES
R?l R?Z R73 R74 R7E R?ﬂ R77 R?B
RSI REZ RE3 RM RSE R‘SE RS7 REB
Rgl R?Z R93 R94' R’BE R?E R37 RSB

The aliased Fourier modes in geophysical systems with quadratic, advection-type
nonlinearity are expected to be relatively weakly correlated.

In such systems the quadratic nonlinearities do not directly couple the Fourier
modes contained in the same aliasing set; that is, if mode k is in the aliasing set A,
the quadratic couplings in the dynamics of uy have the form

d
%(x Uy U, ke AlmgA
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Test Models for Superparameterization

Test model

lI. Test Models for Superparameterization

Features of superparameterization algorithm:
@ intermittent strongly unstable fluctuations, and
o moderate scale separation without statistical equilibration (¢ = 1/6 to 1/10).
2.1. Test model.
Decompose a turbulent field

U=u(X,t)+ (X, x,t,T),
X = ex, T =te L

The scalar multiscale test model:

o
(1) 5 HPOX)E= (cov(W)(X.t)  FFeu(X, D),
N’
nonlinear covariance eddy flux
!
@) O+ P00 = (T + (W (7),
T

where

P(8x) = AdY — vd% + cdx + d, Fext = F 4+ A(X) - W(t),

—1 "

(cov(u')(X, t)) = e/o6 cov(u')(X,t,T)dT = 5/ u'u' (X, t, T)dT,

0

and P’ is a constant coefficient differential operator that depends explicitly on the
mean variable z.
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Test Models for Superparameterization
Test model

Using Ornstein-Uhlenbeck process with damping operator I' and white noise
forcing o(x)W(x, ) for the eddies, it becomes a linear stochastic differential equation
in Fourier space,

di)lk D (= L\~ ~ p
o T P'(@, ik)ty, = —ykly + o W,
with the Fourier coefficient defined by the spectral integral
3) U (X, x,t,7) = / BL(X, t, 7)e dW.
R
Therefore,
4) cov(U)(X, t,7) = /]R Cu(X, t,7)dk, where Cy = & (&))",

The linear deterministic ODE with coefficients depending on @ for the covariance Cy:

dC = .
) e =~ (B 7+ Cuc+ 0w,

Ck(T = 0) = Ck 0-

P
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Test Models for Superparameterization
Numerical implementation

2.2. Numerical implementation.
@ Compute Ci as a solution of IVP in (5) for fixed & for various modes

Ck(T) 2>\k7C O+ 7(1 —2%,(7)’
where
(Pr+ (PD*) + (e +77)
2

@ Compute the turbulent fluctuation (cov(u’)) using the spectral integral (4) and
empirical time average with constant e

Efl
(cov(u')):e/ / Co(r)dkdr
0 RN
2 2
Tk € —2xge L Tk
[T g (e e [ gg— T ) ) | ok
/Rn [nk o < € < k0 2,\k>>}

O Integrate the large-scale PDE in (1) with large time step At on a coarsely
resolved period domain by assuming that the turbulent fluctuation
(cov(u"))(X, t) is constant over the time interval (t, t + At).

Remark: pairwise small scale solutions (cov(u’))(X, t) obtained by freezing & at two
distinct locations X; # X; do not interact directly.

Andrew J. Majda SP and DSS for Filtering Sparse Geophysical Flows
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Test Models for Superparameterization

Small-scale intermittency

2.3. Small-scale intermittency.
To model intermittency, we choose

,3/ ’5/ *

BE B @y,

where _
A = Ae Ikl k2,

In this paper, we choose quadratic

f(@)=w+a—1u

Instability Region

wavenumber (k)

Figure 2: Boundary of unstable modes as a

B/ Bl y* *
function of . Recall A\ = w.
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(a) snapshots of macroscopic solution at t=400.1

<cov(u)>

(b) <cov(u)> at =400.1

3
domain X

(c) solutions at X=3.0925

i 455

s L L L L \ L ,
480 465 470 475 480 485 490 495 500
time

Figure 3: Deterministic forcing solutions.

€ =1/10.
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Test Models for Superparameterization

Superparameterization

2.4. Superparameterization.

Retain large-scale dynamics (1), but make
various space-time discrete approximations
in solving the small-scale dynamics (2) to ,
reduce the computational cost. (@) — +P'(@ 8’ = —(=T(9x) + a(x)W(7)),

au _ ,
= P(8x)i = (cov(u"))(X, t) + Fext (X t),
t

Traditional superparameterization introduces an artificial scale gap L and solves
the small-scale dynamical equations in (2) locally on a periodic domain, which
introduces two types of models:

@ model errors due to finite spatial and temporal discrete approximations, and
@ model errors due to truncation of the direct interaction between nonlocal fluxes.

In our test model, superparameterization only introduces model errors of the first
type. We approximate the covariance integral over the lattice with wavenumbers
kj = j/L such that

2 2
(cov(u)) / T 1 S 1— e (G — =k )| gk
Rn

20, | 20 2,
_ 1 % (1—e 2% %
T e 2hy  2h 5207 o
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Test Models for Superparameterization

Superparameterization

o (a) snapshots of macroscopic solution at t=400.1 {a)snapshots of macroscopic soluon at 400.1

: 5 + + £ 5 10 , , , , , ,
1 2 5 6
domain X domain X
(b) <cov{u)> at t=400.1 (b) <cov(u)> at t=400.1
T | ‘ ‘ T T T T T T T T T T
180 | L‘ ‘ 1 150 1
2 b | 103
¥ ‘ §
05 1 051 1
0 1 2 5 6 0 1 2 3 5 6
domain X domain X

(c) solutions at X=3 0925 (¢) solutions at X=3.0925

~ L L L L L L L L L L L L L L L
450 455 460 465 470 475 480 485 490 495 500 (] 50 100 150 200 250 300 350 400 450 500
time time

Figure 4: Deterministic forced superparameterized approximate solutions with L = 2 (left) and
= 0.1 (right). € = 1/10. Recall k; = j/L.
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Test Models for Superparameterization

Other closure approximations

2.5. Test model for superparameterization and other closure approximations.

Test models for superparameterization

ou

57 + P0x)8 = (cov(u)i(X, £) + Fee(X, 1),

(cov(u")) (X, t) = 6/0‘6 /]R{" Ci(X, t, 7)dkdT.

v
Bare-truncation model
ou

5t + P(0x)u = Fext (X, t)
v
Statistical equilibrium closure model

O P(Ox)T = (cov(u oo (X, ) + Fox(X, 1),

s 2
(cov(u')) oo (X, t) = lim e/ / ck(x,t,r)dkdrz/ Tk g,
e—0 0 R n >\k
Andrew J. Majda
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Filter Performance on Test Models

Stochastically forced prior models

I1l. Filter Performance on Test Models

o Parameters:

e Scale separation parameter ¢ = 1/10.
Total grid points of large scale mean dynamics: N = 128.
Regularly sparse observations at every p model grid points, with p = 4, 8,16 and 32.
Observation noise: r° = 1.41, about 23% — 25% of the covariance of @.
Observation time: typs = 0.5, much shorter than the temporal correlation.
o Measurements of filtering skill:

— 1 d P IR Y
RMS = T—77—0 m:%Jrl (Tm — Tm)*) N,
o1& @ — ),

7= To w55 \J(@h — (@) )2 (En — ()

3.1. Stochastically forced prior models.

s Average RS errors . Average Spatial correlations
= © = bare-trunc
25 eq-closure R
O sPuwithL=2 09! B__
2[| = = = truefilter

T4 8 16 32

Figure 5: Average RMS errors pand SC as functions of p, where thpe observation error \/re= 1.18.
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Filter Performance on Test Models

Flows

Stochastically forced prior models

bare~trunc.

bare-trunc.

eq-closure

eq-closure

SP with L=2

2 3 4 5 6

8P with L=2

true filter

true filter

0 1 2 3

6 0 1

4 5
* Figure 6: Case p=4(left),right:p=8(right)
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Filter Performance on Test Models

Stochastically forced prior models

bare-tunc

bare-tunc

eq-closure

eq-closure

SP with L=2

SP with L=2

true filter

true filter

3 4 5
X Figure 7: Case p=16
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Filter Performance on Test Models
Stochastically forced prior models

Filtering skill with different scale gap L.

(cov(u)) = /RA(k)dk = %ZA(I().
j

Superparameterization as function of L

Figure 8: Case p = 8: Average RMSE and SC as
functions of L. Observation error: /r° = 1.18.
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Superparameterization L=2

Superparameterizafion L=1

1 2 3 4 5 [
Figure 9: Snapshots at t,, = 500 for p = 8 for
superparameterization with various L.
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Filter Performance on Test Models
Controllability

3.2. Controllability. For some initial state xp, if the system is controllable, then for
any state xj, there exists some time t; and some observation v, such that the state at

t is x1.
We use the perfect deterministically forced prior filter model for sparse

observations with p = 4.
The prior model noise covariance is zero => The system is uncontrollable =—-

The Kalman gain matrix is zero = The filter trusts the prior mean estimates
completely.

Not controllable Controllable

Scheme RMS SC RMS SC
bare truncation | 43.1004 | 0.2314 || 0.6331 | 0.9677
eq-closure 28.7007 | 0.2784 || 0.5362 | 0.9677
SP with L = 2 1.1180 | 0.8364 | 0.2775 | 0.9859
true filter 1.1320 | 0.8325 || 0.2777 | 0.9859

Table 1: Average RMS errors and SC for filtering deterministic truth with and without
controllability. p =4, v/r° = 1.18.
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Filter Performance on Test Models

Controllability

bare-trunc. bare-trunc
20
“—-me] oo oo
A o aspT  Ce oo 0y
— e
- —ap|l—=post
_aol
60 L | | | | |
T 7 3 a0 5 G
eqclosure
20 N
°
oo 50 .
Feosoes” Co 0% mooonegooal
3 e
< -0}
0L
30
o 1 2 3 4 5 5 0 1 2 3 4 5 6
8P with L2 SPuith L=
185 15

(] 1 2 3 4 5 3

Figure 10: Case p = 4 filtered with no controllability (left)
to /7° large scale energy spectrum (right) at t, = 500.

o

1 2 3 4 5 6
and with contrdllability corresponding
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Filter Performance on Test Models

Remarks

Remarks.

@ The choice of prior model is very important for sparse observations.

@ The small scale dynamics is very important even if the true signal has a very
steep spectrum with /.

- Energy spectrum for deferministic model
T

107

10

0L

10° 10° 10°
‘wavenumber

Figure 11: Empiricaly estimated large-scale energy spectrum of the deterministically forced system
compared to the /=% spectrum.
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