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Outline

1 Filtering
Filtering: obtaining the best statistical estimation of a nature system from the partial
observations.
Fourier Domain Kalman Filter (FDKF) with regularly spaced sparse observations.

2 Filtering with Superparameterization
linear, analytically solvable model,
model error coming from finite discrete approximations.

3 Filtering with Dynamic Stochastic Superresolution (DSS)
nonlinear model,
using cheap stochastic models to forecast the true nonlinear dynamics.

Test Models for Filtering with Superparameterization, John Harlim and A. J. Majda, submitted, SIAM J.
Multiscale Modeling and Simulation, September 9, 2012.

Dynamic Stochastic Superresolution of sparseley observed turbulent systems, M. Branicki and A. J.
Majda, submitted, Journal of Computational Physics, May 17, 2012.

New methods for estimating poleward eddy heat transport using satellite altimetry, S. Keating, A. J.
Majda and K. S. Smith, Monthly Weather Review, February 9, 2012.
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Basic Notions of Filtering and Test Models for Filtering
with Superparameterization

1 Filtering the Turbulent Signal
Kalman filter
Fourier Domain Kalman Filter (FDKF)
FDKF with regularly spaced sparse observations

2 Test Models for Superparameterization
Test model
Numerical implementation
Small-scale intermittency
Superparameterization
Other closure approximations

3 Filter Performance on Test Models
Stochastically forced prior models
Controllability
Remarks
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Filtering the Turbulent Signal

Kalman filter

I. Filtering the Turbulent Signal
1.1. Kalman Filter

True signal ~um+1 ∈ RN , which is generated from

~um+1 = F~um + ~σm+1 ,

Observation ~vm+1 ∈ RM :

~vm+1 = G~um+1 + ~σo
m+1 ,

where matrix G ∈ RM×N and ~σo
m = {σo

j,m} is an M-dimensional Gaussian while
noise vector with zero mean and covariance

Ro = 〈~σo
m ⊗ (~σo

m)T 〉 = {〈~σo
i,m(~σo

j,m)T 〉} = {δ(i − j)ro}

Forecast model:

~uM
m+1 = F M~uM

m + ~σM
m+1 ,

where F M ∈ RN×N and ~σM
m is an M-dimensional Gaussian while noise vector with

zero mean and covariance

RM = 〈~σM
m ⊗ (~σM

m )T 〉.

Goal: Estimate the true state: ~um+1 ∈ RN from the imperfect prediction model and
the observations of the true signal.

Andrew J. Majda SP and DSS for Filtering Sparse Geophysical Flows



SP and DSS for Filtering Sparse Geophysical Flows

Filtering the Turbulent Signal

Kalman filter

Step 1. Forecast:
Run the forecast model from step m to m + 1,

~uM
m+1|m = F~uM

m|m + ~σM
m+1.

Compute the prior mean and covariance

~̄uM
m+1|m = F M~̄uM

m|m,

RM
m+1|m = F M RM

m|m(F M )T + RM .

Step 2. Analysis:
Compute posterior mean and variance

~̄uM
m+1|m+1 = ~̄uM

m+1|m + Km+1(~vm+1 − G~̄uM
m+1|m),

RM
m+1|m+1 = (I − Km+1G)RM

m+1|m,

where Km+1 is the Kalman gain matrix

Km+1 =
RM

m+1|mG T

GRM
m+1|mG T + Ro

.
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Filtering the Turbulent Signal

Fourier Domain Kalman Filter (FDKF)

1.2. Fourier Domain Kalman Filter (FDKF).
Canonical Filtering Problem: Plentiful Observations

∂

∂t
~u(x , t) = L(

∂

∂x
)~u(x , t) + σ(x) ~̇W (t), ~u ∈ Rs ,

~v(xj , tm) = G~u(xj , tm) + σo
j,m.

The dynamics is realized at 2N + 1 discrete points {xj = jh, j = 0, 1, . . . , 2N} such
that (2N + 1)h = 2π. The observations are attainable at all the 2N + 1 grid points.
The observation noise σo

m = {σo
j,m} are assumed to be zero mean Gaussian variables

and are spatial and temporal independent.
Finite Discrete Fourier expansion of ~u(x , t):

~u(xj , tm) =
∑
|k|≤N

~̂u(tm)e ikxj , û−k = û∗k ,

~̂u(tm) =
h

2π

2N∑
j=0

~u(xj , tm)e−ikxj .

Fourier Analogue of the Canonical Filtering Problem:

~̂uk (tm+1) = Fk
~̂uk (tm) + ~σk,m+1,

~̂vk (tm) = G~̂uk (tm) + ~σo
k,m.

Then the original (2N + 1)s × (2N + 1)s filtering problem reduces to study 2N + 1
independent s × s matrix Kalman filtering problems.
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Filtering the Turbulent Signal

FDKF with regularly spaced sparse observations

1.3. FDKF with regularly spaced sparse observations.
Assume there are N model grid points. We consider the observations at every p

model grid points such that the total number of observation is M with M = N/p.
Sparse Regularly Spaced Observations in Fourier Space is expressed as follows:

~̂uk (tm+1) = Fk
~̂uk (tm) + ~σk,m+1, |k| ≤ N/2,

~̂vl (tm) = G
∑

k∈A(l)

~̂uk (tm) + ~σo
l,m, |l | ≤ M/2,

where the aliasing set of wavenumber l is defined as

A(l) = {k : k = l + Mq|q ∈ Z, |k| ≤ N/2}

Figure 1: 5× 5 sparse observation grid is a regular subset of the 20× 20 model mesh so that every
P = 4 model mesh node is observed. Here N = 20 and M = 5. There are 25 aliasing sets in all:
A(i, j) with i, j ∈ Z and −2 ≤ i, j ≤ 2. All primary modes lie inside the region −2 ≤ kx , ky ≤ 2.
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Filtering the Turbulent Signal

FDKF with regularly spaced sparse observations

The aliased Fourier modes in geophysical systems with quadratic, advection-type
nonlinearity are expected to be relatively weakly correlated.

In such systems the quadratic nonlinearities do not directly couple the Fourier
modes contained in the same aliasing set; that is, if mode k is in the aliasing set A,
the quadratic couplings in the dynamics of uk have the form

duk

dt
∝
∑

ulum, k ∈ A, l,m 6∈ A
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Test Models for Superparameterization

Test model

II. Test Models for Superparameterization
Features of superparameterization algorithm:

intermittent strongly unstable fluctuations, and
moderate scale separation without statistical equilibration (ε = 1/6 to 1/10).

2.1. Test model.
Decompose a turbulent field

U = ū(X , t) + u′(X , x , t, τ),

X = εx , τ = tε−1.

The scalar multiscale test model:

∂ū

∂t
+ P(∂X )ū = 〈cov(u′)〉(X , t)︸ ︷︷ ︸

nonlinear covariance eddy flux

+Fext (X , t),(1)

∂u′

∂τ
+ P′(ū, ∂x )u′ = −(−Γ(∂x )u′ + σ(x)Ẇ (τ)),(2)

where

P(∂X ) = A∂3
X − ν∂

2
X + c∂X + d , Fext = F̄ + Λ(X ) · Ẇ (t),

〈cov(u′)(X , t)〉 = ε

∫ ε−1

0
cov(u′)(X , t, τ)dτ = ε

∫ ε−1

0
u′u′(X , t, τ)dτ,

and P′ is a constant coefficient differential operator that depends explicitly on the
mean variable ū.
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Test Models for Superparameterization

Test model

Using Ornstein-Uhlenbeck process with damping operator Γ and white noise
forcing σ(x)Ẇ (x , τ) for the eddies, it becomes a linear stochastic differential equation
in Fourier space,

dû′k
dτ

+ P̃′(ū, ik)û′k = −γk û′k + σk Ẇk ,

with the Fourier coefficient defined by the spectral integral

(3) u′(X , x , t, τ) =

∫
R

û′k (X , t, τ)e ikx dWk .

Therefore,

(4) cov(u′)(X , t, τ) =

∫
R

Ck (X , t, τ)dk, where Ck ≡ û′k (û′k )∗.

The linear deterministic ODE with coefficients depending on ū for the covariance Ck :

dCk

dτ
= −(P̃′k + (P̃′k )∗ + γk + γ∗k )Ck + σkσ

∗
k ,

Ck (τ = 0) = Ck,0.

(5)
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Test Models for Superparameterization

Numerical implementation

2.2. Numerical implementation.

1 Compute Ck as a solution of IVP in (5) for fixed ū for various modes

Ck (τ) = e−2λkτCk,0 +
σ2

k

2λk
(1− e−2λkτ ),

where

λk =
(P̃′k + (P̃′k )∗) + (γk + γ∗k )

2

2 Compute the turbulent fluctuation 〈cov(u′)〉 using the spectral integral (4) and
empirical time average with constant ε

〈cov(u′)〉 = ε

∫ ε−1

0

∫
Rn

Ck (τ)dkdτ

=

∫
Rn

[
σ2

k

2λk
+

ε

2λk

(
1− e−2λkε

−1

(
Ck,0 −

σ2
k

2λk

))]
dk

3 Integrate the large-scale PDE in (1) with large time step ∆t on a coarsely
resolved period domain by assuming that the turbulent fluctuation
〈cov(u′)〉(X , t) is constant over the time interval (t, t + ∆t).

Remark: pairwise small scale solutions 〈cov(u′)〉(X , t) obtained by freezing ū at two
distinct locations Xj 6= Xl do not interact directly.
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Test Models for Superparameterization

Small-scale intermittency

2.3. Small-scale intermittency.
To model intermittency, we choose

P̃′k + (P̃′k )∗

2
= −f (ū)Ak ,

where
Ak = Āe−δ|k||k|2.

In this paper, we choose quadratic

f (ū) = γk + α− ū2.

Figure 2: Boundary of unstable modes as a

function of ū. Recall λk =
(P̃′k +(P̃′k )∗)+(γk +γ∗k )

2 .

Figure 3: Deterministic forcing solutions.
ε = 1/10.
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Test Models for Superparameterization

Superparameterization

2.4. Superparameterization.
Retain large-scale dynamics (1), but make
various space-time discrete approximations
in solving the small-scale dynamics (2) to
reduce the computational cost.

Test model

∂ū

∂t
+ P(∂X )ū = 〈cov(u′)〉(X, t) + Fext (X, t),(1)

∂u′

∂τ
+ P′(ū, ∂x )u′ = −(−Γ(∂x )u′ + σ(x)Ẇ (τ)),(2)

Traditional superparameterization introduces an artificial scale gap L and solves
the small-scale dynamical equations in (2) locally on a periodic domain, which
introduces two types of models:

1 model errors due to finite spatial and temporal discrete approximations, and

2 model errors due to truncation of the direct interaction between nonlocal fluxes.

In our test model, superparameterization only introduces model errors of the first
type. We approximate the covariance integral over the lattice with wavenumbers
kj = j/L such that

〈cov(u′)〉 =

∫
Rn

[
σ2

k

2λk
+

ε

2λk
(1− e−2λkε

−1

(
Ck,0 −

σ2
k

2λk

)
)

]
dk

=
1

Ln

∑
j

[
σ2

kj

2λkj

+
ε

2λkj

(1− e
−2λkj

ε−1

)

(
Ckj ,0 −

σ2
kj

2λkj

)]
.
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Test Models for Superparameterization

Superparameterization

Figure 4: Deterministic forced superparameterized approximate solutions with L = 2 (left) and
L = 0.1 (right). ε = 1/10. Recall kj = j/L.
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Test Models for Superparameterization

Other closure approximations

2.5. Test model for superparameterization and other closure approximations.

Test models for superparameterization

∂ū

∂t
+ P(∂X )ū = 〈cov(u′)〉L(X , t) + Fext (X , t),

〈cov(u′)〉L(X , t) = ε

∫ ε−1

0

∫
Rn

Ck (X , t, τ)dkdτ.

Bare-truncation model

∂ū

∂t
+ P(∂X )ū = Fext (X , t)

Statistical equilibrium closure model

∂ū

∂t
+ P(∂X )ū = 〈cov(u′)〉∞(X , t) + Fext (X , t),

〈cov(u′)〉∞(X , t) ≡ lim
ε→0

ε

∫ ε−1

0

∫
Rn

Ck (X , t, τ)dkdτ =

∫
Rn

σ2
k

2λk
dk.
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Filter Performance on Test Models

Stochastically forced prior models

III. Filter Performance on Test Models
Parameters:

Scale separation parameter ε = 1/10.
Total grid points of large scale mean dynamics: N = 128.
Regularly sparse observations at every p model grid points, with p = 4, 8, 16 and 32.
Observation noise: r o = 1.41, about 23%− 25% of the covariance of ū.
Observation time: tobs = 0.5, much shorter than the temporal correlation.

Measurements of filtering skill:

RMS =
1

T − T0

T∑
m=T0+1

√
〈(~u+

m − ~um)2〉N ,

SC =
1

T − T0

T∑
m=T0+1

〈
(~u+

m − 〈~u
+
m〉N )(~um − 〈~um〉N )

〉
N√

〈(~u+
m − 〈~u+

m〉N )2〉N〈(~um − 〈~um〉N )2〉N

3.1. Stochastically forced prior models.

Figure 5: Average RMS errors and SC as functions of p, where the observation error
√

r o = 1.18.
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Filter Performance on Test Models

Stochastically forced prior models

Figure 6: Case p=4(left),right:p=8(right) of tm = 500.
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Filter Performance on Test Models

Stochastically forced prior models

Figure 7: Case p=16(left),right:p=32(right) of tm = 500.
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Filter Performance on Test Models

Stochastically forced prior models

Filtering skill with different scale gap L.

〈cov(u′)〉L =

∫
R

A(k)dk =
1

L

∑
j

A(k).

Figure 8: Case p = 8: Average RMSE and SC as
functions of L. Observation error:

√
r o = 1.18. Figure 9: Snapshots at tm = 500 for p = 8 for

superparameterization with various L.

Andrew J. Majda SP and DSS for Filtering Sparse Geophysical Flows



SP and DSS for Filtering Sparse Geophysical Flows

Filter Performance on Test Models

Controllability

3.2. Controllability. For some initial state x0, if the system is controllable, then for
any state x1, there exists some time t1 and some observation v , such that the state at
t1 is x1.

We use the perfect deterministically forced prior filter model for sparse
observations with p = 4.

The prior model noise covariance is zero =⇒ The system is uncontrollable =⇒
The Kalman gain matrix is zero =⇒ The filter trusts the prior mean estimates
completely.

Table 1: Average RMS errors and SC for filtering deterministic truth with and without
controllability. p = 4,

√
r o = 1.18.
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Filter Performance on Test Models

Controllability

Figure 10: Case p = 4 filtered with no controllability (left) and with controllability corresponding

to l−6 large scale energy spectrum (right) at tm = 500.
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Filter Performance on Test Models

Remarks

Remarks.

The choice of prior model is very important for sparse observations.

The small scale dynamics is very important even if the true signal has a very
steep spectrum with l−6.

Figure 11: Empiricaly estimated large-scale energy spectrum of the deterministically forced system
compared to the l−6 spectrum.
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