Ensemble Methods

Brian Hunt 10 June 2013

Goals of Lecture

- Describe a mathematical framework for ensemble methods to estimate Lyapunov exponents/vectors of a dynamical system, and/or to perform data assimilation, without explicitly linearizing the dynamics.
- Discuss work with Cecilia González-Tokman (Physica D 2012) proving that these methods "work" in an appropriate limit for hyperbolic dynamical systems.

Motivation

- For high-dimensional systems, computing the derivative of the system can be very time-consuming.
- An ensemble of nearby trajectories provides discrete information about the derivative.
- Ensemble methods can treat the system as a "black box".

Lyapunov Exponents

- Given a trajectory of a dynamical system, the "tangent linear model" (TLM) describes the evolution of infinitesimal perturbations from that trajectory.
- Lyapunov exponents/vectors (Oseledec 1968) correspond to asymptotically exponential solutions of the TLM.
- Chaos: at least one positive Lyapunov exponent.

Data Assimilation

- Given a forecast model for a physical system and an ongoing time series of observations, data assimilation is an iterative procedure to:
- Synchronize the model state with the physical state, and thereby...
- Estimate the current state of the system based on current and past observations.

Data Assimilation Cycle

- Run a weather forecast model.
- Gather atmospheric observations over a 6hour time interval.
- Adjust the 6-hour forecast state to better fit the observations.
- Use the adjusted model state as the initial conditions for a new forecast.
- Repeat this cycle every 6 hours.

Notation and Terminology

- "Forecast model": a discrete-time dynamical system:
- $$\begin{split} &x_n = f(x_{n-1}), \quad x \in R^m \\ \bullet \ ``\delta\text{-pseudotrajectory'': } \{x_n\} \text{ for which} \\ &|x_n f(x_{n-1})| \leq \delta \end{split}$$
- "Background ensemble": { x_n^{b(i)} }
- "Analysis ensemble": { x_n^{a(i)} }

Ensemble Methods

• Forecast step:

 $x_n^{b(i)} = f(x_n^{a_{-i}(i)}), i = 1, 2, ..., k$

Adjustment step:

 $\{x_n^{a(i)}\} = g(\{x_n^{b(i)}\}, y_n), \quad y \in \mathbb{R}^{\ell}$

• Preserve "ensemble space":

 $\overline{x}_{n}^{a} + \text{Span}\{x_{n}^{a(i)} - \overline{x}_{n}^{a}\}$ $= \overline{x}_{n}^{b} + \text{Span}\{x_{n}^{b(i)} - \overline{x}_{n}^{b}\}$

Example 1: Breeding

Adjustment step:

 $x_n^{a(1)} = x_n^{b(1)}$ $x_n^{a(2)} = x_n^{b(1)} + \beta (x_n^{b(2)} - x_n^{b(1)})$ $|x_{n}^{b(2)} - x_{n}^{b(1)}|$

Uses for Breeding

- With small 8, approximate leading Lyapunov exponent/vector.
- With B representing the size of uncertainty in initial condition, assess forecast uncertainty (Toth & Kalnay, 1993).

Ensemble Data Assimilation

- Given: observations $\{y_n\}$ and a "forward operator" h such that

$$\begin{split} y_n &= h(x_n{}^t) + \epsilon_n \\ \text{where the "truth" } \{x_n{}^t\} \text{ is a} \\ \text{pseudotrajectory and the "error" } \epsilon_n \text{ is} \\ \text{usually small.} \end{split}$$

 Goal: design the ensemble adjustment operator g so that the ensemble approximates the truth well.

Ensemble Kalman Filtering

- Introduced by G. Evensen (1994).
- Many variations, e.g. pert. obs. EnKF (Burgers et al. 1998, Houtekamer & Mitchell 1998), EAKF (Anderson 2001), EnSRF (Whitaker & Hamill 2002).
- Formulation here based on LETKF (Hunt et al. 2007), drawing on LEKF (Ott et al. 2004) and ETKF (Bishop et al. 2002).

Ensemble Kalman Filter

- Assume (pretend) $\epsilon_n \sim N(0,R)$ i.i.d.
- Consider $\overline{x}_n^{\ b}$ to represent the "most likely" true state given past data; $\overline{x}_n^{\ a}$ likewise but given current data too.
- Consider each ensemble to represent a Gaussian distribution with the same (sample) mean and covariance.

Ensemble Kalman Filter, cont.

- Analysis (posterior) distribution determined by Bayes' rule from the background (prior) and observation error distributions, linearizing h in ensemble space.
- Qualitatively, the adjustment step moves the ensemble toward the background members that best match the data and reduces its covariance (new information → less uncertainty).

Ensemble Kalman Filter, cont.

• Formally (square brackets \rightarrow form matrix):

$$\begin{split} \overline{x}_{n}^{a} &= \overline{x}_{n}^{b} + [x_{n}^{b(i)} - \overline{x}_{n}^{b}]L_{n}(y_{n} - \overline{h(x_{n}^{b})}), \\ [x_{n}^{a(i)} - \overline{x}_{n}^{a}] &= [x_{n}^{b(i)} - \overline{x}_{n}^{b}]T_{n}, \\ L_{n} &= L(\{h(x_{n}^{b(i)})\}, R), \\ T_{n} &= T(\{h(x_{n}^{b(i)})\}, R) \end{split}$$

 Remark: Breeding can also be formulated this way with appropriate y, h, L, T.

ETKF specifics

• Use

$$\begin{split} \mathbf{L}_{n} &= \mathbf{T}_{n}^{2} \mathbf{Y}_{n}^{T} \left((\mathbf{k} - 1) \mathbf{R} \right)^{-1}, \\ \mathbf{T}_{n} &= \left(\mathbf{I} + \mathbf{Y}_{n}^{T} \left((\mathbf{k} - 1) \mathbf{R} \right)^{-1} \mathbf{Y}_{n} \right)^{-1/2} \end{split}$$

where

$$\mathbf{Y}_{n} = [\mathbf{h}(\mathbf{x}_{n}^{\mathbf{b}(i)}) - \overline{\mathbf{h}(\mathbf{x}_{n}^{\mathbf{b}})}].$$

 Among all T_n that give the correct analysis covariance, this minimizes distance from background to analysis ensemble.

Takens Embedding Theorem

• If $f: \mathbb{R}^m \to \mathbb{R}^m$ is the time 1 map of a \mathbb{C}^2 flow with no orbits of integer period up to 2m+1, and all of whose fixed points have simple eigenvalues different from 1, then for generic $\mathbb{C}^2 h: \mathbb{R}^m \to \mathbb{R}$, the map

 $\mathbf{x} \rightarrow (\mathbf{h}(\mathbf{x}), \mathbf{h}(\mathbf{f}^{-1}(\mathbf{x})), \dots, \mathbf{h}(\mathbf{f}^{-2\mathbf{m}}(\mathbf{x})))$

is an embedding (one-to-one and its derivative has full rank everywhere).

Embedding Theorem, cont.

- True for diffeomorphisms more generally, and for "prevalent" h.
- For a d-dimensional attractor, the number of observations only has to exceed 2d (Sauer, Yorke, Casdagli 1991; following Takens 1981).
- Attractor: a compact invariant set that attracts nearby initial conditions.

Hyperbolicity

• We say an attractor A of a C¹ diffeomorphism $f : \mathbb{R}^m \to \mathbb{R}^m$ is hyperbolic if $\exists C > 0, \lambda > 1 > \mu$, and $\forall x \in A, \exists$ subspaces $E^+(x)$ and $E^-(x)$ s.t. Df $E^{\pm}(x) = E^{\pm}(f(x))$ and $\forall v \in E^+(x)$ and n > 0 we have $|Df^n(x)v| \ge C\lambda^n |v|$, while $\forall v \in E^-(x)$ and n > 0 we have $|Df^n(x)v| \ge have |Df^n(x)v| \le C^{-1}\mu^n |v|$.

Results (w/ C. González Tokman)

- Proposition: Let f and h be as in Takens' Theorem, and A be a hyperbolic attractor w/ <k unstable directions. Then $\exists C, \delta_0 >$ 0 s.t. if $\delta \leq \delta_0$, $\{\mathbf{x}_n^t\}$ is a δ -pseudotrajectory, and $|\varepsilon_n| \leq \delta$, then k-member ETKF has the following property. For an open set of initial ensembles, the ensemble stays within $C\delta$ of the truth.
- The ensemble spread in the unstable directions stays $\geq C^{-1}\delta$.

Lyapunov Exponents from ETKF

- Recall: $[\mathbf{x}_n^{a(i)} \overline{\mathbf{x}}_n^{a}] = [\mathbf{x}_n^{b(i)} \overline{\mathbf{x}}_n^{b}]T_n$
- Corollary: If the ensemble covariance remains bounded (above and below), the positive Lyapunov exponents/vectors of the attractor can be estimated to order δ from the matrices T_n (we proved this for the largest Lyapunov exponent).
- Caveat: for high-dimensional systems, we can only practically estimate finite-time Lyapunov exponents/vectors.

Remarks

- For weather models, we use ensembles that are smaller than the global number of unstable directions. This works only because in LEKF/LETKF we use "localization": assimilate in local regions.
- With similar hypotheses, we should be able to prove that for δ sufficiently small, for generic initial perturbations, breeding approximates the largest Lyapunov exponent/vector to within order δ.

Conclusions

- Ensemble methods provide a discrete analogue to algorithms that use the derivative of a dynamical system (e.g., standard methods for computing Lyapunov exponents, Extended Kalman Filter, 4D-Var).
- We can prove convergence results for ensemble methods in hyperbolic systems...and beyond??