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Goals of Lecture 

• Describe a mathematical framework for 

ensemble methods to estimate Lyapunov 

exponents/vectors of a dynamical system, 

and/or to perform data assimilation, 

without explicitly linearizing the dynamics. 

• Discuss work with Cecilia González-

Tokman (Physica D 2012) proving that 

these methods “work” in an appropriate 

limit for hyperbolic dynamical systems.  



Motivation 

• For high-dimensional systems, 
computing the derivative of the 
system can be very time-consuming. 

• An ensemble of nearby trajectories 
provides discrete information about 
the derivative. 

• Ensemble methods can treat the 
system as a “black box”. 



Lyapunov Exponents 

• Given a trajectory of a dynamical system, 
the “tangent linear model” (TLM) describes 
the evolution of infinitesimal perturbations 
from that trajectory. 

• Lyapunov exponents/vectors (Oseledec  
1968) correspond to asymptotically 
exponential solutions of the TLM. 

• Chaos: at least one positive Lyapunov 
exponent. 



Data Assimilation 

• Given a forecast model for a physical 

system and an ongoing time series of 

observations, data assimilation is an 

iterative procedure to: 

• Synchronize the model state with the 

physical state, and thereby… 

• Estimate the current state of the system 

based on current and past observations.  



Data Assimilation Cycle 

• Run a weather forecast model. 

• Gather atmospheric observations over a 6-

hour time interval. 

• Adjust the 6-hour forecast state to better fit 

the observations. 

• Use the adjusted model state as the initial 

conditions for a new forecast. 

• Repeat this cycle every 6 hours. 



Notation and Terminology 

• “Forecast model”:  a discrete-time 

dynamical system: 

   xn = f(xn–1), xRm 

• “-pseudotrajectory”:  {xn} for which 

   |xn – f(xn–1)|   

• “Background ensemble”:  { xn
b(i) } 

• “Analysis ensemble”:  { xn
a(i) } 



Ensemble Methods 

• Forecast step: 

  xn
b(i) = f(xn

a
–
(i

1
) ), i = 1, 2, …, k 

• Adjustment step: 

  { xn
a(i) } = g({ xn

b(i) }, yn), y Rℓ 

• Preserve “ensemble space”: 

    `xn
a + Span{ xn

a(i) –`xn
a } 

  =`xn
b + Span{xn

b(i) –`xn
b}  



Example 1: Breeding 

• Adjustment step: 

  xn
a(1) = xn

b(1) 

  xn
a(2) = xn

b(1) + β (xn
b(2) – xn

b(1)) 

     |xn
b(2) – xn

b(1)| 

1 

2 



Uses for Breeding 

• With small β, approximate leading 

Lyapunov exponent/vector. 

• With β representing the size of 

uncertainty in initial condition, assess 

forecast uncertainty (Toth & Kalnay, 

1993). 



Ensemble Data Assimilation 

• Given: observations {yn} and a “forward 

operator” h such that 

  yn = h(xn
t) + εn 

 where the “truth” {xn
t } is a 

pseudotrajectory and the “error” εn is 

usually small. 

• Goal:  design the ensemble adjustment 

operator g so that the ensemble 

approximates the truth well. 



Ensemble Kalman Filtering 

• Introduced by G. Evensen (1994). 

• Many variations, e.g. pert. obs. EnKF 

(Burgers et al. 1998, Houtekamer & 

Mitchell 1998), EAKF (Anderson 2001), 

EnSRF (Whitaker & Hamill 2002). 

• Formulation here based on LETKF (Hunt 

et al. 2007), drawing on LEKF (Ott et al. 

2004) and ETKF (Bishop et al. 2002). 



Ensemble Kalman Filter 

• Assume (pretend) εn  N(0,R) i.i.d. 

• Consider`xn
b to represent the “most 

likely” true state given past data;`xn
a 

likewise but given current data too. 

• Consider each ensemble to represent 

a Gaussian distribution with the same 

(sample) mean and covariance. 



Ensemble Kalman Filter, cont. 

• Analysis (posterior) distribution determined 

by Bayes’ rule from the background (prior) 

and observation error distributions, 
linearizing h in ensemble space. 

• Qualitatively, the adjustment step moves 

the ensemble toward the background 

members that best match the data and 

reduces its covariance (new information  

less uncertainty). 



Ensemble Kalman Filter, cont. 

• Formally (square brackets  form matrix): 

  `xn
a =`xn

b + [xn
b(i)–`xn

b]Ln(yn–h(xn
b)), 

  [xn
a(i) –`xn

a] = [xn
b(i) –`xn

b]Tn, 

  Ln = L({h(xn
b(i))}, R),  

  Tn = T({h(xn
b(i))}, R) 

• Remark:  Breeding can also be formulated 

this way with appropriate y, h, L, T. 



ETKF specifics 

• Use 

  Ln = Tn
2 Yn

T ((k–1)R) –1,  

  Tn = (I + Yn
T ((k–1)R) –1 Yn)–1/2 

 where 

   Yn =[h(xn
b(i))– h(xn

b)]. 

• Among all Tn that give the correct analysis 

covariance, this minimizes distance from 

background to analysis ensemble.  



Takens Embedding Theorem 

• If f : Rm  Rm is the time 1 map of a C2 

flow with no orbits of integer period up to 

2m+1, and all of whose fixed points have 

simple eigenvalues different from 1, then 

for generic C2 h : Rm  R, the map 

  x  (h(x),h(f –1(x)),…,h(f –2m(x)))  

 is an embedding (one-to-one and its 

derivative has full rank everywhere). 



Embedding Theorem, cont. 

• True for diffeomorphisms more 
generally, and for “prevalent” h. 

• For a d-dimensional attractor, the 
number of observations only has to 
exceed 2d (Sauer, Yorke, Casdagli 
1991; following Takens 1981). 

• Attractor: a compact invariant set that 
attracts nearby initial conditions. 



Hyperbolicity 

• We say an attractor A of a C1 diffeo-

morphism f : Rm  Rm is hyperbolic if  C 

> 0, l > 1 > m, and  x  A,  subspaces 

E+(x) and E–(x) s.t. Df E±(x) = E±(f(x)) and 

v E+(x) and n > 0 we have |Dfn(x)v|  

Cln|v|, while v E–(x) and n > 0 we 

have |Dfn(x)v|  C–1mn|v|. 



Results (w/ C. González Tokman) 

• Proposition:  Let f and h be as in Takens’ 

Theorem, and A be a hyperbolic attractor 

w/ <k unstable directions.  Then  C, 0 > 

0 s.t. if   0, {xn
t } is a -pseudotrajectory, 

and |en|  , then k-member ETKF has 

the following property.  For an open set of 

initial ensembles, the ensemble stays 

within C of the truth. 

• The ensemble spread in the unstable 

directions stays  C–1. 



Lyapunov Exponents from ETKF 

• Recall:  [xn
a(i) –`xn

a] = [xn
b(i) –`xn

b]Tn 

• Corollary: If the ensemble covariance 
remains bounded (above and below), the 
positive Lyapunov exponents/vectors of 
the attractor can be estimated to order  
from the matrices Tn (we proved this for 
the largest Lyapunov exponent). 

• Caveat: for high-dimensional systems, we 
can only practically estimate finite-time 
Lyapunov exponents/vectors. 



Remarks 

• For weather models, we use ensembles that are 

smaller than the global number of unstable 

directions.  This works only because in 

LEKF/LETKF we use “localization”: assimilate in 

local regions. 

• With similar hypotheses, we should be able to 

prove that for  sufficiently small, for generic 

initial perturbations, breeding approximates the 

largest Lyapunov exponent/vector to within order 

. 



Conclusions 

• Ensemble methods provide a discrete 

analogue to algorithms that use the 

derivative of a dynamical system (e.g., 

standard methods for computing Lyapunov 

exponents, Extended Kalman Filter, 4D-

Var). 

• We can prove convergence results for 

ensemble methods in hyperbolic 

systems…and beyond?? 


