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Goals of Data Assimilation (DA)

o Estimate the state of a system based on
both current and all past observations of the
system, using a model for the system
dynamics.

o Perform the estimation iteratively: compute
the current estimate in terms of a recent
past estimate.

o Ideally, quantify the uncertainty in the state
estimate.



Terminology and Notation

Forecast model: a known function M on a
vector space of model states.

Truth: an unknown sequence {x,} of model
states to be estimated.

Model error: 6, = Xp 1 — M(Xp).
Observations: a sequence {y,} of vectors
in observation space (may depend on n).

Forward operator: a known function H, from
model space to observation space.

Observation error: e, = ¥y, — Ha(Xn).



When DA is not Necessary

If the forward operator H, is invertible and
en = 0then x, = H, ' (y,).

If H,, is invertible and the statistics of =, are
known, then we can compute the pdf of x,
(but data assimilation can improve the
estimate).

Note: the pdf (probability density function)
of x gives the relative likelihood of the
possible values of x. The maximizer
(“mode”) of the pdf is the most likely value.



More Terminology

Background (“first guess”): estimate x? of
the current model state x, given past

observations y,..., V0 1.
Analysis: estimate x?2 of x, given current
and past observations y1, . ... y,.

A data assimilation cycle consists of:

Analysis step: Determine analysis xZ from
background x? and observations ;.

Forecast step: Typically x?, ; = M(x3).



Remarks on the Analysis Step

o If the observation error =, is zero, we should
seek x2 close to x? such that H,(x?) = y,.

o Otherwise, we should just make H,(x?)
closer to y, than H,(x?) is.

o How much closer depends on the relative
uncertainties of the background estimate x;
and the observation y,,.

e The better we understand the uncertainties,
the clearer it is how to do the analysis step.



Bayes’ Rule

o Definition of conditional probability:
P(VIW) = P(Vn W)/P(W)
P(V given W) = P(V and W)/P(W)
e Then
P(VIW)P(W) =P(VnW)=P(V)P(W|V).
e Corollary:

P(VIW) = P(V)P(W|V)/P(W)

posterior = prior - likelihood/normalization



Bayesian Data Assimilation

o Assume that the statistics of the model
error 6, and observation error =, are known.

o Theoretically, given an analysis pdf
p(Xn_1|¥1,--.,¥n 1), We can use the
forecast model to determine a background
(“prior”) pdf p(Xn|y1, ... ¥Yn 1)

» The forward operator tells us p(y,|xn).

o Bayes' rule tells us that the analysis
(“posterior”) pdf p(x,|y1,...,¥n)is
proportional to p(Xa|y1, - . .. Yn-1)P(Vn|Xn)-



Advantages and Disadvantages

o Advantage: the analysis step is simple —
just multiply two functions.

o Disadvantage: the forecast step is generally
unfeasible in practice.

e If x is high-dimensional, we can'’t
numerically keep track of an arbitrary pdf for
x —too much information!

o We need to make some simplifying
assumptions.



Linearity and Gaussianity

Assume that M and H, are linear.
Assume model and observation errors are
Gaussian with known covariances and no
time correlations: ¢, ~ N(0, Q,) and

en~ N(O, Rp).

Then in the analysis step, a Gaussian
background pdf leads to a Gaussian
analysis pdf.

Gaussian input yields Gaussian output in
the forecast step too.

Let the background pdf have mean x? and
covariance P-.



Bayesian DA with Gaussians
e The (unnormalized) background pdf is:

exp[—(xn — x7) " (PF) " (xo — x7) /2]
o The pdf of y, given x, is
exp[—(HnXn — yn)T"?;1 (Hnxn — yn)/2]
« The analysis pdf is the exp(—J,/2) where:
In =(Xn = X7)(PR) " (X0 — X7)
+ (HpXn — yn)T":")rT1 (HnXn — ¥n)

 To find the mean and covariance of the
analysis pdf, we want to write:

In=(Xa = x3) (P ' (xa— x3) + C



The Kalman Filter
[Kalman 1960]

o After some linear algebra, the analysis
mean x7? and covariance P7 are
Pi=[(P)" +Hy Ry H] ™
= [+ PyHy Ry Hil ' Pr
where K, = P2HT R is the Kalman gain
matrix.
« The forecast step is x?, ; = Mx7 and
Pb . = MP°MT + Q,

n-+1



Observation Space Formulation

o After some further linear algebra, the
Kalman filter analysis equations can be
written

Ky, =P2HT[H,P°HT + R,
x2 =x2 + K (yn — Hyx®)
P2 =(I — K,H,)P?
o The size of the matrix that must be inverted
is determined by the number of (current)

observations, not by the number of model
state variables.



Example
Assume that M = H,, = /, that x is a scalar,
andthat Q,=0and R, =r > 0.

We are making independent measurements
Y1, yo, ... of a constant-in-time quantity x.
The analysis equations are:
X5 =xp + PAr(yn — X7)

(P =(P) "+
Start with a uniform “prior” pdf: (P°)"" =0
and x? arbitrary.
Then by induction, P2, = P2 = r/nand
Xpoy = X3 =(y1+--+yn)/n.



A Least Squares Formulation

 In terms of all the observations y1, ..., y,,
what problem did we solve to estimate x,?

e Assume no model error (6, = 0).
o The likelihood of a model trajectory
Xi,...,Xpis exp(—dJn/2) where:
n
o= (Hixi — y) TR (Hix; — i)
i=1
e Problem: minimize the cost function
Jn(Xx1, ..., Xn) subject to the constraints
Xir1 = Mx;.



Kalman Filter Revisited

The Kalman filter expresses the minimizer
x5 of J, in terms of the minimizer x7 , of
Jn—1 as follows.

It expresses J, 1 as a function of x, 1 only.

It keeps track of an auxiliary matrix P3|
that is the 2nd derivative (Hessian) of J, 1.
Assuming it has done so correctly at time

n — 1, the next slide explains why it does so
at time n.



Kalman Filter Revisited

If x2 , minimizes J, 1 and P{ . is its
HeSS|an then

Int = (Xn1=X51) T (P_1) " (Xn-1—X5_1)+Cn 1

Then substituting x, = Mx, 1, x? = Mx2__,
and P? = MP2_ M yields:

In-1 = (Xo = Xp) " (P3) " (Xa — X7) + Cn_1
We get the same cost function as before:
Jn = Jn1 + (Hxn — ya) "RV (Hxy — yin)
The KF completes the square as before.



Nonlinear Least Squares

e Now let’s eliminate the assumption that M
and H; are linear.
o As before, assume no model error and
Gaussian observation errors.
e The maximum likelihood estimate for the
true trajectory is the minimizer of:
n
Jn="> (Hi(x:) = y) TR (Hi(x;) — yi)
i=1
subject to the constraints x;, 1 = M(x;).



Approximate Solution Methods

Use an approximate solution at time n — 1
to find an approximate solution at time n.

If we track covariances associated with our
estimates, we can write:

In-1 % (Xn-1=X51) (Pi4)  (Xp1—X7 1) +C

As a further approximation, we can write:
In1 % (Xa—x7) (PR) " (%0 — X7) + C

It seems clear that x? should be M(x2 ,),
but what choice of P? is best?



Extended Kalman Filter

o Matching the second derivatives of the two
approximate cost functions yields
Pb = (DM)P2_,(DM)" where DM is the
derivative of M at x7 ,.

e The remaining equations are like the
Kalman filter (linearizing H,, near x?).

o Advantage: The approximation error may
be smaller than for other methods.

o Disadvantage: For a high-dimensional
model, the covariance forecast is
computationally expensive.



Extended KF (Square Root Form)

o If M is computed by solving a system of
differential equations, then DM is computed
by solving the associated tangent linear
model (TLM).

o If P2 = X2 (X2 )T, then compute

XP = (DM)Xx2_,, followed by P? = XP(XP)T.

 This is easier if X2 | has (many) fewer
columns than rows; the resulting covariance
has reduced rank.

o The Kalman covariance update becomes
X7 = X2 (HaX7) T[Ha X2 (Ha X)) T + Ra] ~1/2.



Tangent Linear Model

Suppose x, = x(n) where dx/dt = F(x).
Then for all solutions, M(x(0)) = x(1).
Consider a family of solutions with
X,(0) = xo + yv; then
DM(x0)v = (8/07)%,(1)],—o.
Let v(1) = (9/07)x,(1)]o.
Substituting x, () into the ODE and
differentiating w.r.t. ~ yields

dv/dt = DF(xo(t))v

Compute v(1) with v(0) = v to get
DM(xp)v.




Ensemble Kalman Filter

Use an ensemble of model states whose
mean and covariance are transformed
according to the Kalman filter equations.

Forecast each ensemble member
separately.

Advantage: Relatively easy to implement
and the analysis step is computationally
efficient.

Disadvantage: Only represents uncertainty
in a space whose dimension is bounded by
the ensemble size (inherently reduced
rank).



3D-Var

Replace PP with a time-independent
background covariance matrix B,
determined empirically.

Numerically minimize the resulting cost
function (allowing nonlinear H,).

Advantage: The covariance B and
associated matrices (B'/? is used in the
analysis) only need to be computed once.
Disadvantage: Ignores time dependence of
background uncertainty, which can vary
considerably.



(Strong Constraint) 4D-Var
[le Dimet & Talagrand 1985]

e Numerically minimize the cost function

Jn —(Xn p )TB (Xn p Xrti)—p)
+ Z —y)" R (Hi(xi) — 1)
i=n—p

subject to the constraints x; .1 = M(x;).

o Advantage: Accuracy, especially as p
increases.

» Disadvantage: Difficult to implement and
computationally expensive.



