Local Ensemble Transform Kalman Filter

Brian Hunt

11 June 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Review of Notation

- Forecast model: a known function *M* on a vector space of model states.
- Truth: an unknown sequence {*x_n*} of model states to be estimated.
- Observations: a sequence {y_n^o} of vectors in observation space.
- Forward operator: a known function H_n from model space to observation space.
- Observation error: $\varepsilon_n = y_n^o H_n(x_n)$.
- Background (before data): superscript b.
- Analysis (after data): superscript a.

Kalman Filter Review

- The Kalman Filter tracks a mean $x_n^{b,a}$ and covariance $P_n^{b,a}$ representing a Gaussian distribution of model states.
- The analysis step assumes Gaussian observation errors and computes (exactly if H_n is linear) x_n^a and P_n^a from x_n^b , P_n^b , and the observation error covariance R_n .
- The forecast step sets $x_{n+1}^b = M(x_n^a)$.
- If *M* is nonlinear, there is no "right" way to propagate the covariance from *P^a_n* to *P^b_{n+1}*.

Practical Difficulties

- If *x* is *m*-dimensional, then *P* is an *m*-by-*m* matrix
- If *m* is large, the computational cost of storing and manipulating *P* may be prohibitive.
- Linearizing the model around the forecast trajectory (as required by the Extended Kalman Filter) can be expensive.
- Ensemble Kalman Filters make a low-rank approximation to *P* and avoid explicit linearization of the forecast model.

Ensemble Kalman Filters

- Introduced by Geir Evensen [1994].
- Use the sample mean and covariance of an ensemble of forecasts as the Kalman filter background.
- Form an ensemble of states that matches the Kalman Filter analysis mean and covariance and use it to initialize the next ensemble forecast.
- Assumption: the model is approximately linear within the range of the ensemble.

Ensemble Analysis

- Subscripts now index ensemble members and not time.
- Input: background ensemble x₁^b,..., x_k^b with sample mean x̄^b and covariance P^b; observation information y^o, H, R.
- Output: analysis ensemble x₁^a,..., x_k^a with sample mean x̄^a and covariance P^a determined as in the Kalman Filter.

Kalman Filter Equations

• Recall the Kalman filter analysis equations:

$$K = P^b H^T [HP^b H^T + R]^{-1}$$

 $\bar{x}^a = \bar{x}^b + K(y^o - H\bar{x}^b)$
 $P^a = (I - KH)P^b$

- Note: $\bar{x}^a \bar{x}^b$ is called the analysis increment.
- What should we do if *H* is nonlinear?
- How do we determine the analysis ensemble?

Nonlinear Forward Operator *H*

- Write $P^b = X^b (X^b)^T$ where X^b is the matrix whose *i*th column is $(x_i^b \bar{x}^b)/\sqrt{k-1}$.
- Let $Y^b = HX^b$ if H is linear.; then:

$$K = X^{b} (Y^{b})^{T} [Y^{b} (Y^{b})^{T} + R]^{-1}$$

$$\bar{x}^{a} = \bar{x}^{b} + K (y^{o} - H\bar{x}^{b})$$

$$P^{a} = (X^{b} - KY^{b}) (X^{b})^{T}$$

• For nonlinear *H*, let $y_i^b = H(x_i^b)$, let \bar{y}^b be the mean of the y_i^b , and let Y^b be a matrix whose *i*th column is $(y_i^b - \bar{y}^b)/\sqrt{k-1}$.

Perturbed Observations

- There are many possible analysis ensembles whose mean and covariance are x^a and P^a.
- One can apply the Kalman Filter update to each ensemble member, perturbing the observed values differently for each:

$$x_i^a = x_i^b + K(y^o + \varepsilon_i - y_i^b)$$

where $\varepsilon_i \sim N(0, R)$ [Burgers et al. 1998, Houtekamer & Mitchell 1998].

• Then if *H* is linear, one can show that the expected mean and covariance of the analysis ensemble are \bar{x}^a and P^a .

Deterministic Approaches

- Square root filters track a matrix "square root" of the model state covariance matrix; in our case X^b for which P^b = X^b(X^b)^T.
- We seek a matrix X^a of (scaled) analysis ensemble perturbations such that P^a = X^a(X^a)^T.
- Add \bar{x}^a to the (scaled) columns of X^a to get the analysis ensemble.
- Various approaches to determining X^a from X^b: EAKF [Anderson 2001], ETKF [Bishop et al. 2001, Wang et al. 2004], EnSRF [Whitaker & Hamill 2002]; see also [Tippett et al. 2003].

Reduced Rank: Pros and Cons

- The background covariance allows analysis increments only in the space spanned by the ensemble perturbations.
- Indeed, in all the approaches on the last two slides, each analysis ensemble member can be written $x_i^a = \bar{x}^b + X^b w_i$.
- If the ensemble is too small, the filter may fail.
- If an ensemble of reasonable size is successful, analysis computations can be done in the ensemble space spanned by the background ensemble perturbations.

Underlying Assumptions

- A linear combination of background ensemble states is a plausible state.
- The truth lies reasonably close to the ensemble space.
- More precisely, most of the uncertainty in the background state lies in the ensemble space.
- In particular, forecast uncertainty lies in a relatively low-dimensional space.

(ロ) (同) (三) (三) (三) (○) (○)

A 2.5 Day Ensemble Forecast

A 4.5 Day Ensemble Forecast

Spatial Localization

- For a spatially extended system, it may not be feasible to forecast an ensemble large enough to span the possible global states.
- If long-distance correlations are weak, the ensemble covariance will represent spurious long-distance correlations.
- Localization reduces the effect of spurious correlations and allows analysis increments from a higher dimensional space.

Localization Approaches

- A standard approach is to localize the background covariance P^b by multiplying each element by a factor between 1 (for variables at the same grid point) and 0 (for variables farther apart than a chosen localization distance.
- Our approach [LEKF, Ott et al. 2004; LETKF, Hunt et al. 2007] is do a separate analysis for each grid point using only observations from within a local region that we choose.
- These analyses can be done in parallel.

Inflation does "Time Localization"

- Many filters use multiplicative covariance inflation, which at each step multiplies the forecast (background) covariance by *ρ* for an ad hoc parameter *ρ* > 1.
- This is equivalent to multiplying the term corresponding to observations from t analysis cycles ago in the least squares cost function by a weight ρ^{-t}.
- Covariance inflation compensates for effects of model error, model nonlinearity, etc.

LETKF Formalism

- LETKF stands for Local Ensemble Transform Kalman Filter; equivalent to LEKF but formulated more like ETKF.
- Recall $P^b = X^b (X^b)^T$ where X^b is a matrix whose *i*th column is $(x_i^b \bar{x}^b)/\sqrt{k-1}$.
- Consider model states x = x^b + X^bw where w is a k-dimensional vector.

If w has mean 0 and covariance I, then x has mean x^b and covariance P^b.

Analysis in Ensemble Space

- Let y_i^b = H(x_i^b), let y
 ^b be their mean, and form the matrix Y^b of perturbations like X^b.
- Make the linear approximation:

 $H(\bar{x}^b + X^b w) \approx \bar{y}^b + Y^b w$

• Minimize the cost function:

 $J(w) = \rho^{-1} w^T w$

 $+(\bar{y}^b+Y^bw-y^o)^TR^{-1}(\bar{y}^b+Y^bw-y^o)$

• Compare to:

$$J(x) = (x - \bar{x}^{b})^{T} (\rho P^{b})^{-1} (x - \bar{x}^{b}) + (H(x) - y^{o})^{T} R^{-1} (H(x) - y^{o})$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Analysis in Ensemble Space

• The analysis mean \bar{w}^a and covariance A are:

$$A = [I + (Y^b)^T R^{-1} Y^b]^{-1}$$

$$\bar{w}^a = A(Y^b) R^{-1} (y^o - \bar{y}^b)$$

• Then $\bar{x}^a = \bar{x}^b + X^b \bar{w}^a$ and $P^a = X^b A (X^b)^T$.

- Notice that the analysis equations in w coordinates depend only on the background ensemble {y_i^b} in observation space and the observation data y^o and R.
- The matrix that is inverted to find A is
 k-by-k and has no small eigenvalues.

Asynchronous Observations

- With this formulation, the filter easily becomes "4D" (properly takes into account temporal information) when observations are asynchronous.
- When mapping the background ensemble members x_i^b into observation space, use the background state at the appropriate time for each observation.
- Assumption: a linear combination of ensemble trajectories is an approximate model trajectory.

Choice of Analysis Ensemble

- To form the analysis ensemble vectors w_i^a , add to \bar{w}^a the columns of the symmetric square root $W^a = [(k-1)A]^{1/2}$.
- The analysis ensemble $x_i^a = \bar{x}^b + X^b w_i^a$ then has the correct mean and covariance.
- Other choices are possible, but this choice minimizes the change (in *w*, or in *x* with *P^b*-norm) between the background and analysis ensembles.
- Recall that we determine a different w^a_i for each grid point, using only observations from a local region near that grid point.

Weight Interpolation

- If the localization distance is large relative to the grid spacing, overlapping local regions make nearby analyses consistent.
- For a high-resolution model, the overlap causes a lot of computational redundancy.
- Solution: Compute the weights w^a_i on a coarse grid of analysis points and interpolate them to the other grid points.
- Can improve balance [Yang et al. 2009].

Tapering Observation Influence

- At a given grid point, our local analysis (as described so far) uses nearby observations at "full" influence, while distant observations have zero influence.
- The influence can be tapered more smoothly from "1" to 0 by multiplying each diagonal entry σ_j⁻² in R⁻¹ by a factor 0 ≤ α_j ≤ 1 that depends on the distance from the corresponding observation location to the analysis grid point.
- If *R* is not diagonal, replace R^{-1} by $DR^{-1}D$, where *D* is diagonal with entries $\sqrt{\alpha_j}$.

· ロ > ・ (回 > ・ 三 > ・ 三 - ク < (· つ > ・ 三 - ク < (· つ > ・ - 三 - ク < (· つ > ・ - □) ・ - □)

Toy Model Results

 Perfect model test with Lorenz-96 system of coupled ODEs on a circular lattice:

 $dx_m/dt = (x_{m+1} - x_{m-2})x_{m-1}x_m + 8.$

- We used a model trajectory as the truth and add noise to simulate observations.
- We compared our LEKF, using only observations from within 6 grid points, with a global ensemble Kalman filter (FEKF) [Ott et al. 2004].

(日) (日) (日) (日) (日) (日) (日)

Global vs. Local Filter

M = model size, k+1 = ensemble size, E = error

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Comparison to NCEP (2004) 3D-Var

- We ran the U.S. National Centers for Environmental Prediction global forecast model (GSM) at reduced T62 resolution (about 500, 000 grid points).
- We compared our LETKF analyses with analyses from NCEP's 3D-Var system (SSI) using actual Winter 2004 non-satellite observations (about 300, 000 per 6 hours).
- We used a 60-member ensemble, 800 km radius local region, spatially varying inflation $\rho \sim 1.25$ [Szunyogh et al. 2008].

48-hour Forecast Error (compared to radiosonde observations)

+ = our LETKF o = NWS 3D-Var

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э

Computational Speed

- At NCEP, less than 10 minutes of every 6 hour cycle is used for data assimilation.
- Our implementation took about 15 minutes on a 40-processor Linux cluster.
- The computation time is approximately:
 - linear in the number of observations;
 - linear in the number of model grid points;
 - quadratic in the number of ensemble members.

Extensions

- Parameter/Bias Estimation: treat parameters of *M* or *H* as state variables with time derivative zero (Baek et al. 2006, 2009; Cornick et al. 2009; Fertig et al. 2009).
- Nongaussian Filter: minimize nonquadratic cost function numerically in ensemble space (Harlim & Hunt 2007), as in MLEF (Zupanski 2006).

(日) (日) (日) (日) (日) (日) (日)

Conclusions

- LETKF is a relatively simple, efficient, and flexible framework for reduced-rank data assimilation that works in practice.
- The method is largely model-independent.
- It scales well to large systems.
- Full citations for references to our group's work are on the publications page at: http://www.weatherchaos.umd.edu
- Motto: Forecast globally, assimilate locally.