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Statistical Formulation

• Given observed time series: y1, y2, . . .

• Want to estimate state vectors x1, x2, . . .

• Stat. model: known pdfs p(yn|xn), p(xn|xn−1)

– Often assume Gaussian noise:
– Measurement: p(yn|xn) ∼ N(h(xn),R)

– Dynamical: p(xn|xn−1) ∼ N(m(xn−1),Q)

– If Q = 0, then xn = m(xn−1)

• Problem: describe p(xn|y1, y2, . . . , yn),
perhaps in terms of a “prior” pdf p(x0).



Bayesian Data Assimilation

• Data assimilation solves the problem
iteratively (and in practice, approximately).

• Exact solution: given p(xn−1|y1, . . . , yn−1),
– Forecast step: p(xn|y1, . . . , yn−1) =∫

p(xn|xn−1)p(xn−1|y1, . . . , yn−1)dxn−1

– Analysis step: p(xn|y1, . . . , yn) ∼
p(yn|xn)p(xn|y1, . . . , yn−1) [Bayes’ rule]

• Drawback: forecast step is intractable.



Kalman Filter

• If p(yn|xn) and p(xn|xn−1) are Gaussian and
linear

p(yn|xn) ∼ N(Hxn,R)

p(xn|xn−1) ∼ N(Mxn−1,Q)

then all distributions on previous slide are
Gaussian.

• For Bayesian data assimilation, need only
keep track of mean and covariance.

• Kalman Filter expresses forecast and
analysis steps as linear algebra equations.



Ensemble Kalman Filters

• Forecast an ensemble of state vectors
according to dynamical model.

• Associate a Gaussian distribution with the
ensemble via sample mean and covariance.

• Use Kalman Filter analysis equations to
transform sample mean and covariance.

• Choose an ensemble consistent with the
output mean and covariance to initialize the
next forecast (variety of approaches).



EnKF: Schematic



Non-Gaussian Ensemble Filtering
• Replace boxes on previous slide!
• Nonparametric approach: particle filters.
• Parametric approach:

– Infer parameters of assumed form for
p(xn|y1, . . . , yn−1) from forecast
ensemble.

– Given yn, perform MLE (or suitable
approximation) to determine parameters
for p(xn|y1, . . . , yn).

– Choose ensemble consistent with those
parameters to initialize next forecast.



Example 1: MLEF
• Maximum Likelihood Ensemble Filter

[Zupanski 2005]: Use Gaussian for
p(xn| · · · ) but allow p(yn|xn) to be
non-Gaussian.

• An MLE then requires minimizing a
nonquadratic function, which must be done
numerically.

• The Gaussian distribution is based on a
low-rank sample covariance; need only
minimize in the space spanned by the
ensemble (not the model state space).



Example 2: Non-Gaussian LETKF
• Joint work with John Harlim [2007].
• Uses framework of LETKF [Hunt, Kostelich,

Szunyogh 2007; Ott et al. 2004].
• Idea: associate to the ensemble a

non-Gaussian distribution whose support is
still in the ensemble space.

• For p(xn| · · · ), we used a distribution with
exponential tail (decays slower than
Gaussian) – similar to “Huber” cost function.

• Tested with simulated observations
generated by adding Gaussian noise to a
model trajectory.



Numerical Experiments by Harlim
• Performed experiments with Lorenz models

(’63 and ’96) and SPEEDY model [Molteni
2003], a simplified (atmospheric) GCM.

• Non-Gaussian filter yielded noticeable
improvement for Lorenz models when
observation noise and time between
observations was sufficiently large.

• For SPEEDY with realistic observation
noise, improvement was mainly during
initialization. Computation time was only
about 30% slower than Gaussian filter.



Summary
• Gaussian data assimilation minimizes a

quadratic function algebraically.
• Non-Gaussian data assimilation requires

numerical minimization and thus is
computationally more expensive.

• NG Ensemble DA still inexpensive if
ensemble size is not too large (EnKF
successful with 40 ensemble members in
multi-million-dimensional model space).

• Can be worth the effort if the application is
sufficiently nonlinear and/or non-Gaussian.



Particle Filters
• Main idea: Do approximate Bayesian data

assimilation with discrete probability
distributions supported on a finite number
of model states (“particles”).

• Keep track of a reasonably large ensemble
of particles x1, . . . , xk and corresponding
(scalar) weights w1, . . . ,wk whose sum is 1.

• The associated pdf (using Dirac δ) is

p(x) =
k∑

i=1

wiδ(x − xi)



Particle Forecast and Adjustment

• Make a (stochastic) model forecast for each
particle xi .

• Applying Bayes’ rule changes only the
weights {wi}, not the particles.

• Advantage: no averaging of model states!
• Disadvantage: If the model is chaotic, then

none of the particles will stay close to the
truth. Also, the weights tend to concentrate
on one particle.



“Importance” Resampling
• After adjusting weights, resample (many

stragegies available) the particles so that
particles with low weight are eliminated and
particles with high weight are replicated.

• If the forecasts are deterministic, this won’t
help – eventually all particles will be the
same and be decorrelated from the truth.

• With a stochastic forecast, replicated
(high-probability) particles spread out and
hopefully sample the vicinity of the truth
well enough to maintain a high number of
particles near the truth.



Curse of Dimensionality
• Ideally, in the limit that the number of

particles goes to infinity, a particle filter
converges toward exact Bayesian data
assimilation with continuous prior.

• For low-dimensional systems, it is plausible
to use enough particles to reasonably
sample the “correct” prior and posterior
distributions.

• It is implausible to use enough particles to
reasonably sample a high-dimensional
probability distribution; if there are many
degrees of freedom, may need a hybrid.


