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Statistical Formulation

Given observed time series: y1, yo, . ..

Want to estimate state vectors xi, xo, . ..
Stat. model: known pdfs p(y,|xn), P(Xn|Xn-1)
— Often assume Gaussian noise:

— Measurement: p(y,|x,) ~ N(h(x,), R)

— Dynamical: p(x|x,-1) ~ N(m(x,-1), Q)
— If Q =0, then x, = m(x, 1)

Problem: describe p(xn|y1, V2, ..., ¥n),
perhaps in terms of a “prior” pdf p(xp).



Bayesian Data Assimilation

» Data assimilation solves the problem
iteratively (and in practice, approximately).
« Exact solution: given p(X,_1|y1.. ... ¥n-1),
— Forecast step: p(xq|y1, ..., Vo 1) =
J p(XalXn-1)P(Xn-1[y1. - - . Yn—1)dXn—1
— Analysis step: p(Xa|y1, ..., Vn) ~
P(YalX0)P(Xal Y1+ - - Yn-1) [Bayes' rule]
o Drawback: forecast step is intractable.



Kalman Filter

e If p(yn|xn) and p(x,|x,_1) are Gaussian and

linear
p(YnlXn) ~ N(Hxp, R)
p(Xn|Xn—1) ~ N(Mxp-1,Q)

then all distributions on previous slide are
Gaussian.

o For Bayesian data assimilation, need only
keep track of mean and covariance.

o Kalman Filter expresses forecast and
analysis steps as linear algebra equations.



Ensemble Kalman Filters

Forecast an ensemble of state vectors
according to dynamical model.

Associate a Gaussian distribution with the
ensemble via sample mean and covariance.

Use Kalman Filter analysis equations to
transform sample mean and covariance.

Choose an ensemble consistent with the
output mean and covariance to initialize the
next forecast (variety of approaches).
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Non-Gaussian Ensemble Filtering

Replace boxes on previous slide!
Nonparametric approach: particle filters.

Parametric approach:

— Infer parameters of assumed form for
p(Xn|V1, ..., ¥n 1) from forecast
ensemble.

— Given y,, perform MLE (or suitable
approximation) to determine parameters
for p(xaly1, ..., Vn).

— Choose ensemble consistent with those
parameters to initialize next forecast.



Example 1: MLEF

o Maximum Likelihood Ensemble Filter
[Zupanski 2005]: Use Gaussian for
p(xy| -+ ) but allow p(y,|x,) to be
non-Gaussian.

o An MLE then requires minimizing a
nonquadratic function, which must be done
numerically.

o The Gaussian distribution is based on a
low-rank sample covariance; need only
minimize in the space spanned by the
ensemble (not the model state space).



Example 2: Non-Gaussian LETKF
 Joint work with John Harlim [2007].

Uses framework of LETKF [Hunt, Kostelich,
Szunyogh 2007; Ott et al. 2004].

|ldea: associate to the ensemble a
non-Gaussian distribution whose support is
still in the ensemble space.

For p(x,|---), we used a distribution with
exponential tail (decays slower than
Gaussian) — similar to “Huber” cost function.
Tested with simulated observations
generated by adding Gaussian noise to a
model trajectory.



Numerical Experiments by Harlim

o Performed experiments with Lorenz models
(‘63 and ’96) and SPEEDY model [Molteni
2003], a simplified (atmospheric) GCM.

o Non-Gaussian filter yielded noticeable
improvement for Lorenz models when
observation noise and time between
observations was sufficiently large.

o For SPEEDY with realistic observation
noise, improvement was mainly during
initialization. Computation time was only
about 30% slower than Gaussian filter.



Summary

Gaussian data assimilation minimizes a
quadratic function algebraically.

Non-Gaussian data assimilation requires
numerical minimization and thus is
computationally more expensive.

NG Ensemble DA still inexpensive if
ensemble size is not too large (EnKF
successful with 40 ensemble members in
multi-million-dimensional model space).

Can be worth the effort if the application is
sufficiently nonlinear and/or non-Gaussian.



Particle Filters

e Main idea: Do approximate Bayesian data
assimilation with discrete probability
distributions supported on a finite number
of model states (“particles”).

o Keep track of a reasonably large ensemble
of particles x1, ..., xx and corresponding
(scalar) weights wq, ..., wx whose sum is 1.

o The associated pdf (using Dirac 9) is
k

p(x) = Z Wio(X — X;)



Particle Forecast and Adjustment

o Make a (stochastic) model forecast for each
particle x;.

o Applying Bayes’ rule changes only the
weights {w;}, not the particles.

o Advantage: no averaging of model states!

o Disadvantage: If the model is chaotic, then
none of the particles will stay close to the
truth. Also, the weights tend to concentrate
on one particle.



“Importance” Resampling

o After adjusting weights, resample (many
stragegies available) the particles so that
particles with low weight are eliminated and
particles with high weight are replicated.

e If the forecasts are deterministic, this won’t
help — eventually all particles will be the
same and be decorrelated from the truth.

« With a stochastic forecast, replicated
(high-probability) particles spread out and
hopefully sample the vicinity of the truth
well enough to maintain a high number of
particles near the truth.



Curse of Dimensionality

e Ideally, in the limit that the number of
particles goes to infinity, a particle filter
converges toward exact Bayesian data
assimilation with continuous prior.

e For low-dimensional systems, it is plausible
to use enough particles to reasonably
sample the “correct” prior and posterior
distributions.

e Itis implausible to use enough particles to
reasonably sample a high-dimensional
probability distribution; if there are many
degrees of freedom, may need a hybrid.



