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3. Verification

Over the recent years, Environment Canada (EC) has devoted important resources to
investigate the feasibility of replacing its 4D-Var data assimilation scheme in the global
deterministic prediction system (GDPS) by a computationally cheaper variational
scheme (4D-EnVar) where background error covariances are represented by a blend of
climatological covariances and 4D flow-dependent covariances derived from an EnKF-
based global ensemble prediction system (Buehner et al., 2013).

> Results showed that a global-based 4D-EnVar scheme can provide RDPS forecasts
slightly improved compared to the operational limited-area 4D-Var scheme, particularly
during the first 24-h of the forecasts and in summertime convective regime where the
lack of moist physical processes representation in our TL/Ad model and the lower

resolution of the analysis increments impede the performances of our 4D-Var scheme.
Following the positive results observed so far from 4D-EnVar in EC's GDPS, a similar

effort was recently initiated in the regional deterministic prediction system (RDPS) : :
which relies on a limited-area 4D-Var data assimilation scheme (Tanguay et al., 2011; 3.1. Against Radiosondes
operational since October 2012).
Red ( ) boxes indicate that forecasts from 4D-EnVar are statistically significantly
better (worst) than forecasts from 4D-Var
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3.2. Against Surface Reports
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In 4D-EnVar the background-error covariances and analysed state are explicitly 4-
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« Improved satellite radiances bias correction method

« Balloon drift taken into account for all the assimilated radiosondes
« Additional observations
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