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The UK Met Office’s operational global forecasts are currently based on a hybrid four-dimensional 

variational assimilation (hybrid-4DVar). In this scheme, the background error covariance (B) at the 

beginning of the assimilation window is specified as a weighted sum of a fixed (but full-rank) 

climatological part and a flow-dependent (but limited-rank) contribution derived from the MOGREPS-G 

ensemble. However, the perturbation-forecast (PF) and adjoint models which 4DVar uses to evolve 

covariances over time impose significant computational and maintenance cost, and may not scale well 

on future massively-parallel computer systems. The Met Office is therefore testing an alternative 

scheme, called 4D-Ensemble-Var (4DEnVar), in which the temporal correlations are taken from the 

ensemble, whilst the climatological part of the hybrid reverts to a three-dimensional formulation. 

Table 1: Summary of the performance of 4DEnVar for a larger set of 

variables, levels and lead-times (each combination is termed a 

‘component’). The right-hand columns show the number of components 

for which the 4DEnVar RMS error is better/neutral/worse than the 

specified control, where ‘neutral’ is defined as ±2%. The 4DEnVar 

advantage over hybrid-3DVar is particularly apparent in the Northern 

Hemisphere, whilst the disadvantage compared to hybrid-4DVar is 

stronger in the Southern Hemisphere. 

Future work 

We are currently investigating the impact of 

waveband localisation on 4DEnVar. Flow-

adaptive localisation may also help to 

improve its performance. Trials with 

increased weight on the ensemble 

covariances, even if not optimal, may simplify 

the interpretation of results by making the 

methods more comparable. 

 

The reduced cost of 4DEnVar makes it an 

attractive method for ensemble initialization. 

It has theoretical advantages over the ETKF 

currently used by MOGREPS-G, in areas 

such as localization, re-linearization, the use 

of balanced variables, and greater 

consistency with the way the central analysis 

is produced (Bowler et al., 2013). A single 

system serving both purposes should also 

reduce maintenance costs. Trials of a 

4DEnVar-based ensemble are currently 

ongoing. We may also test a system using 

perturbed observations instead of the 

deterministic filter approach, since this would 

remove the assumption that the DA scheme 

is optimal. Better ensemble perturbations 

should in turn benefit the hybrid DA, further 

improving both the deterministic and 

ensemble forecasts. 
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Figure 1: Traditional 4DVar (top) defines a fixed 

B at the beginning of the assimilation window, 

which is evolved and made partially flow-

dependent using PF and adjoint models. Hybrid 

4DVar (middle) augments the climatological B 

with a flow-dependent contribution from a 

separate ensemble, but still uses PF and 

adjoint models to evolve this in time. 4DEnVar 

(bottom) uses the 4D covariance predicted by 

the ensemble, together with a 3D climatological 

contribution, so no PF or adjoint models are 

required. In the current implementation, a single 

set of ensemble member coefficients is chosen 

for the whole assimilation window, so there is 

no time localisation (only spatial localisation). 

Impact on deterministic forecasts 

Analysis increments calculated at N216 resolution (60km typical grid spacing). 

Ensemble covariances from the operational 44-member MOGREPS-G ensemble, again at N216 

resolution, which calculates initial perturbations using a local Ensemble Transform Kalman Filter 

(ETKF), centred around the analysis from the existing operational hybrid-4DVar. 

Covariance weights: 0.8 climatological, 0.5 ensemble (sum exceeding 1.0 to make the fit to 

observations comparable to non-hybrid 4DVar; our operational system now uses 1.0, 0.3). 

N320 Deterministic forecasts (40km typical grid spacing). 

Northern Hemisphere autumn period (9 Oct–8 Nov 2011). 

Gaussian horizontal localisation with half-width 1200km. 

Vertical localisation as in the operational hybrid-4DVar. 

Initialisation uses 6h Incremental Analysis Update (IAU) for 3DVar. An ‘IAU-like’ approach filters 

the climatological but not the ensemble modes in 4DEnVar, whilst 4DVar uses a Jc balance 

penalty term instead of an IAU. 

Several trials have been run to compare the performance of deterministic forecasts initialised using 

4DEnVar with other approaches. Notable features of the trial setup include: 
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Figure 2: 3DVar uses a standard IAU in which 

the single increment is split over a 6h window to 

filter out high-frequency features which are 

presumed to be noise. 4DEnVar deduces an 

increment which combines a constant 3DVar-

like climatological contribution with an evolving 

ensemble contribution. The ‘IAU-like’ 

application of this increment again filters high-

frequency features from the climatological 

contribution, together with time-uncorrelated 

noise from the ensemble data, but leaves the 

coherent ensemble evolution unfiltered. 

Figure 3: Performance of 4DEnVar compared to 

hybrid-3DVar. These have similar background error 

specifications, except that hybrid-3DVar ignores the 

time dimension of the ensemble data. The general 

reduction in RMS error indicates that this time 

evolution is generally beneficial. 

Figure 4: Performance of 4DEnVar compared to 

hybrid-4DVar (representing the performance of the 

current operational system degraded to the same 

analysis and forecast resolution as the other trials). 

Possible reasons for the inferior performance of 

4DEnVar include the loss of flow-dependence in the 

climatological part of the hybrid, the fact that the 

ensemble localisation does not move with the flow, 

and initialisation issues. These are explored more fully 

in Andrew Lorenc’s talk. 

Figure 5: The use of a larger 176-member ensemble reduces the RMS 

error from 4DEnVar. Both sides of this comparison use covariance 

weights of 1.0 climatological, 0.3 ensemble, and localisation as above. 

Idealised localisation experiments 

Another focus of future work will be the 

interaction of ensembles and DA at 

convection-permitting scales. Appropriate 

localisation may be key to the success of 

convective-scale ensemble DA, due to 

the complex, variable dynamics and wide 

range of scales. Dong et al. (2011) 

present a situation in which the 

assimilation is improved by using different 

localisation radii for different observation 

types. I have conducted some idealised 

localisation experiments to explore this 

surprising result, whilst avoiding 

confounding issues such as non-

Gaussian statistics, different observations 

affecting different variables, and the 

cyclic dependence of B on past 

observations. 

 

The basic scenario considers 100 points 

on a 1D line. A uniform B is specified 

analytically, with unit variance and a 

Gaussian falloff as a function of distance 

with a half-width of 5 gridpoints. Both the 

truth and 5 background ensemble 

members are obtained as random 

samples from this covariance using an 

eigenvector decomposition. Observations 

are provided at specified intervals with 

unit error variance. The scenario is 

repeated 1000 times to estimate the RMS 

error of the ensemble mean analysis, 

which is obtained by direct application of 

the Kalman Filter equation. 

Figure 6: RMS error as a function of the half-width of the Gaussian 

localisation function, for scenarios with observations every 2 (solid) or 40 

(dotted) gridpoints. Each line has been normalised by its minimum value to 

highlight the impact of localisation radius despite the large difference in RMS 

error between the two different observation densities. In this simple case, 

both observation spacings are optimised by very similar localisation radii. 

Figure 7: As Figure 6, except that B is now an equal-weight sum of 

Gaussians with half-widths of 5 and 20 gridpoints, representing a multi-scale 

system. The localisation is still a simple Gaussian. The optimal localisation 

radius for the sparse observations is now about twice that for the dense 

network, even though B is the same in both cases. The observation error 

variance has been halved to emphasise the result. 

Figure 8: As Figure 7, except the localisation is now an equal-weight sum of 

Gaussians with half-width LRadius and 4*LRadius. The optimal radius is now 

very similar for the two observation densities (although the RMS error for 

dense observations is marginally worse than the best simple Gaussian – not 

shown). This suggests that the major problem in Figure 7 may be not so 

much the multi-scale B as the failure of the localisation to respect this new 

shape. This suggests a potential advantage for adaptive schemes that derive 

the localisation as a statistically-motivated function of the sample B. 
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