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» Past studies indicate that incorporating environmental variability is
crucial for successful very short-range (0-1 h) convective-scale
ensemble forecasts.

* The goal is to explore the impact of model physics on the creation of
mesoscale environmental variability and its uncertainty.

« A combined mesoscale-convective scale ensemble data assimilation
and forecast experiments are conducted for a supercell storm.
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(LEFT) Severe weather reports from NOAA’s Storm Prediction Center. (RIGHT) The National
Weather Service surveyed damage path.

EXPERIMENT DESIGN Isolines of 10°C 2-m dewpoint temperature forecasts from FixedPhysics and MultiPhysics Neighborhood ensemble probability forecasts of 0-3 km updraft helicity from FixedPhysics
convective-scale ensemble members (thin blue lines), ensemble mean (thick blue lines) and MultiPhysics convective-scale ensembles exceeding thresholds of (a, b) 150 m?s2, (c, d)
. : and Oklahoma mesonet observation (red line). The portion of the domain shown here is 201 200 m%s2 and (e, f) 250 m2s2 starting at 2200 UTC and ending at 2240 UTC. The bottom
The Adva'?ced Research Weather Research and ForecaStmg (WRF'ARW X 435 km wide. panel (g) is the WDSS-1l generated KTLX radar observed low level (0-3 km AGL) mesocyclone
core version 3.3.1) model track during 2200-2240 UTC (MD is missing data). Overlaid in each panel is the NWS
. Two 36 member mesoscale data assimilation experiments over FORECAST LOCATIONS OF SIGNIFICANT TORNADO PARAMETER observed tornado damage track (black ouiflme in a-f and green outline in g) that starts a1§
: : . _ — 2210 UTC and ends at 2238 UTC. The portion of the domain shown here is 120 x 90 km wide
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2. MultiPhysics Ensemble : E STP and 0-3 km UH probabilities, all show that the MultiPhysics
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independent 3DVAR analyses of reflectivity are used as observations. Department of Commerce.
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