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INITIAL-VALUE PROBLEM FOR DECADAL CLIMATE PREDICTIONS IDEALIZED EXPERIMENTS WITH LOW-ORDER MODEL DA EXPERIMENTS USING CMIP5 DATA

Improved decadal climate predictions require initial conditions (ICs) providing Motivation: Are findings obtained with simplified low-order model (e.g. value of
coherent & accurate descriptions of the fast (atmosphere) and slow/memaory-carrying = 100-member ensemble simulation from random small amplitude perturbations assimilating time-averaged observations ) applicable to more realistic prediction
(ocean) components of the climate system. How to generate these ICs in a robust around reference ICs [truth= member corresponding to reference ICs | systems?
and efficient manner remains an open question. = Low frequency variability: Centennial scale dominant + weaker decadal signal = “No cycling” DA idealized “perfect model” experiments can easily be performed
o8 | | using output from long simulations from comprehensive atmosphere-ocean
Questions explored here: = 20 ::r:gl,;\rl\jl éblzi\r/]0|u|tl?1n of general circulation models (AOGCMs).
= |s data assimilation (DA) needed? 0 :g 3 "enesemble similgtign = Monthly output from CCSM4 “last millennium” CMIPS simulation is used
= |s coupled atmosphere-ocean DA a fundamental requirement? S 5L Ensemble-mean-] of the Lorenz- = Focus on AMOC: analysis variable = maximum value of meridional overturning
= What is the most efficient & effective approach for initializing the slow ocean? = 0f o T Tuth —1 Stommel model. streamfunction
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Initialization of Atlantic meridional overturning circulation (AMOC) chosen as Time (years) S emmzsen e bemiezmeniimem] | 1 T ' 1 T JFigure 6. Temporal
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simulation.

Initial exploration based on a simplified low-order coupled climate model,
complemented by experiments based on output from a comprehensive coupled
climate model (CMIP5 database).
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= |Cs for 100-member ensemble simulation of ocean states from random draws of
model states from 5000-yr “truth” simulation
(initial ensemble contains only information on climatology) 1750
= Free: Fully coupled simulations from initial coherent atmosphere & ocean states -
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index in the CCSM4 [ast-

deterministic atmosphere (truth)
= Non-coupled: recovering the AMOC by forcing ocean model with known c _
atmospheric states (e.g. atmospheric reanalyses L -0, T T T ] Figure 3. . . - .
P (.0 P yses) T oM Aa - Ev%lution of = Monthly AOGCM gridded output “coarse grained” to low-order variables:
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. . S A AT W i average over subtropical & subpolar boxes (atmosphere & upper ocean) & dee
= Coupled DA with an ensemble Kalman filter (EnKF): & 25F AT %0k oast . 4 AMOC ensemble oceangbox P P ( P PP ) P
= Daily DA, or the traditional approach: frequent assimilation of individual 2 2 e ensembl € Pt agfg SPread in free anc .
observations £ 150 e e ST forced simulations = Daily output of sea level pressure, near-surface temperature & water vapor used
— . . . , D AF o Fen trengatd g aaag oo SORe Bandan] Of he low-order to estimate eddy amplitude & meridional heat and moisture eddy fluxes at 40°N
= Assimilation of time-averaged observations (Dirren & Hakim 2005; Huntley & S sl %p. fit: e-folding time = 8344 years VT L odel . .
. . 05 o Exp. fit: e-folding ime = 3423 years - following method presented in Chang et al. (2013 )
Hakim 2010): less frequent DA & more robust sampling of atmosphere-ocean SR | S T T R T T T TR P B
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OB ? ORI 00 6 000 : - averaging interval is increased : potential for more effective DA at longer scales
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Time scale (year)
---------------------------------- = DA experiments: AMOC analyses in various data denial scenarios (progressively = State vector: low-order variables; truth = Fig. 6; obs. = perturbed truth
) less assimilated ocean obs.) & initial ensemble from random draws of model = Monthly DA compared to assimilation of time-averaged obs. (various avg. scales)
Stommel 3-box ocean model 3 - - states = Ensemble size = number of “independent” samples in 1000-yr simulation
Figure 1. Schematic of the Lorenz-Stommel low-order coupled atmosphere-ocean model. = Assimilation of daily obs. versus yearly-averaged obs. (12000 for monthly DA down to 20 for DA of 50-yr averaged obs.)
= Assimilation of alternative variable w/ stronger covariability w.r.t. AMOC: R iure 8. CE values for AMOC analvses
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tropospheric air temperature or 2—2=—q(53—81)—KZ(82 —83)+Q3 : ) a e
Zonal W|nd dt 2 N yearly-averaged m ° Averaging tim:c:nterval {years) ° "
ds. 1 1 observations) under
o . NV, —=2==q(S,-S,)+K,(S,—-S;)+K,(S,-S,) various scenarios of data SUMMARY
Y, Z: amplitudes of cosine and sine dt 2 1 lability in th . e e
phases of large scale transient B T ¢ s ] avaliabliity In the ocean. = Q1: DA needed! More effective at initializing low frequency component of ocean
eddies q=u|a(T,-T)-B(S,-S))] = Q2: Continuum behavior in ocean DA vs coupled atmosphere-ocean DA:
Frequent ocean DA most effective when ocean is well-observed, but coupled
Coupling assimilation of time-averaged obs. becomes critical when ocean is poorly
F=F+FRcosat+F,(T,-T,) observed (e.g. hindcasts initialized prior to availability of sufficient obs. in ocean)
G=G +G. cosat+G.T = Q3: “No cycling” assimilation of time-averaged obs. slightly less accurate but
0 1 21 . :
viable & cheap alternative
_ 2 2 : — — L _ : : : : g :
Q, =C+C, (Y +/ ) ) eddy energy (ed dvﬂpaﬁgfses} {g;;;he;:g:}d };ﬂ;g;ﬁ;g:}d Qé}. Generality of main conclgsmns from study using simplified model confirmed
using data from comprehensive AOGCM.




