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Summary

The Diffusive Back and Forth Nudging (DBFN) is an easy-to-implement iteralata assimi-
lation method based on the well-known Nudging method. It consists in a sexjoéfmward
and backward model integrations, within a given time window, both of them ssilegdback
term to the observations. Therefore in the DBFN, the Nudging asymptoticvioehatranslated
Into an infinite number of iterations within a bounded time domain. In this metihadback-
ward integration is carried out thanks to what is called backward madech is basically the
forward model with reversed time step sign. To maintain numerallgya the diffusion terms
also have their sign reversed, giving a diffusive character to the diguaritn this presentation,
the DBFN performance to control a primitive equation ocean model is igatstl. In this kind
of model, non-resolved scales are modelled by diffusion operators wtsskpdte energy that
cascades from large to small scales. Thus, in this article the DBfakbaimations and their
consequences on the data assimilation system set-up are analysed. Owasoaie that despite
the lack of accuracy of the backward model, the DBFN provides results thabameacable to
those produced by a 4Dvar implementation. The required conditions include the uséat a
assimilation window+ 10 days) along with a reduced model diffusion and a Nudging gain able
to spread the observation information to the non-observed variables.

Diffusive Back and Forth Nudging algorithm

The BFN was first introduced by Auroux and Blum (2008) and consists in an ite@tgorithm
which sequentially solves the forward model equations with a feedbackitethe observations
and the backward model equations with the sign of the feedback term revehsemitial condi-
tion of the backward integration is the final state obtained after integratithve dbrward nudging
equation. At the end of each iteration one obtains an estimate of the ingtialdtthe system.
The iterations are carried out until convergence.

We used the Diffusive Back and Forth Nudging-DBFN (Auroux et al., 2011), designedab
the instabilities of the backward integration in dissipative systemishidiDBFN we keep the sign
of the diffusion, during the backward integration, consistent with the forward haodleonly the
non-diffusive physical model is solved backwards. This is of relevant isit@meoceanography
because the non-diffusive part of the model is generally reversible. Wenasthat the time
continuous model satisfies dynamical equations of the form:

X
X _ F(X)+rvAX,

O0<t<T 1
- , (1)

with initial condition X (0) = x(, whereF’ denotes the nonlinear model operator without diffusive
terms,v is the diffusion coefficient and represents the diffusion operator. In the following we
will denote by H the observation operator, allowing one to compare the observakigns:)
with the correspondindi (X (t)), the subspcript: is the iteration index and and K’ are the
forward and backward gain matrices respectively. If we apply nudgihgrieard system (1) we
obtain:

0X
= F(Xp) + vAX) + K(Xop — H(X))) (22)

X1(0) = Xj_1(0), 0<t<T, (2b)
while nudging applied to the backward system gives:

0X . . i
8—tk = F(Xy) — vAX), — K'(X s — H(Xp)) (3a)

X.(T) = X.(T), T>t>0. (3b)

Partial Least Squares regression (PLS)

The PLS method was first introduced by Wold (1975) to address the problem of eetimom
path modeling, and was subsequently adopted for regression problems in cégmand spec-
trometric modeling. In the method descriptiaki, € R"*¥ is considered as the observed or
predictor variables antl € R™*¥ as the non-observed or response variables. In our notation
IS the sample size and and NV are respectively the size of the state spac& @éndY . Besides,
X andY are centered and have the same units. The PLS regression featurésgsvasdimen-
sion reduction step in which the predictors from matkixare summarized in a small number of
linear combinations called “PLS components”. Then, these components arasipeedictors
In the ordinary least-squares regression. The PLS as well as the pric@mponent regression
can be seen as methods to construct a mdtmmt p mutually orthogonal components defined as
linear combinations ok:

T=XW,

whereT' € R"*P is the matrix of new components, afid € R *? js a weight matrix satisfying
a particular optimality criterium.
The columnswy;. .. ;wy of W are calculated according to the following optimization problem:

w; = arg max{cov(Xw,Y)?}
w
subject tow! w; = 1 andw! X' Xw; =0forj=1,...,i— 1.
The PLS estimatoB! > is given by:

B —wwlxTxw)y=-twlxly.

An immediate consequence is that whHén= I the original least square solution is obtained.
The number of componenisis chosen from cross-validation. This method requires a test of
the model with objects that were not used to build the model. The data detdsd into two
contiguous blocks; one of them is used for training and the other to validate ttiel.mbhen

the number of components giving the best results in terms of mean residuahedrestimator
variance Is sought.

Results

The errors in the initial condition decrease exponentialy during the iterptocedure for both
observed and non observed variables. The way they decrease depends on thetgdt and
the information content available from the observations. The smakenimber of observations
the bigger the number of iterations required to converge, although this doaseaot that the
final states are the same, even if the observations are extracted fravdel solution.
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The DBFN converges to good initial condition estimates:
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Figure 3: Example of model run: comparison between the true @&ft) and identified state by
the DBFN (right).
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Figure 4: Relative error of the SSH, U-velocity and Tempertu
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Figure 5: RMS of vertical zonal velocity and EOF error modeswaled using forecast from
day 200 to day 720.

Conclusions

e DBFN can be used for ocean DA despite the low accuracy of thiensad integration.

Figure 1: In color: evolution of the errors during the Figure 2: Relative errors on the ini-
Back and Forth iterations and during the forecast phasetial condition with respect to the iter-
In black: evolution of the error for the control and direct ations for the experiment assimilating
nudging experiments. daily gridded SSH fields.

Using the variable transformatidgh= 7' — ¢, we can write the backward model as: o Use of scalar gains requires high spatial and temporal #itiiyeof data.

¢ In the case of sparse data, the PLS model builds complex @nscthat propagate the infor-
mation from the data to the non-observed variables and neareéd regions of the domain.

e DBFN results are at least comparable with 4DVar, with a mualetacomputational cost.

~ ~

0X . .
b~ _F(X) 4+ vAX + K'( X, — H(X})) Xy (t' = 0) = Xp(D).

ot
This equation shows that the backward equation can be solved with an comdition and the

same diffusion term as in the forward equation.
The convergence criterium we use in the following is given by the inegualit
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wheres = 0.005 (based on sensitivity tests).



