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/ INTRODUCTION \

Hourly wind power prediction plays a key role in the integration of wind power in
energy production networks comprising different energy sources. The ability to
predict hourly wind power up to a 48h lead time relies on accurate Numerical
Weather Predictions (NWP) of near-surface winds. Although increasing the
resolution of the NWP model helps to improve the forecasting skill in the lower
troposphere, the main sources of forecast errors are still the analyses inaccuracy
due to the limited number of near-surface wind observations assimilated, the
atmospheric boundary layer modeling, and the growth of large-scale phase and
amplitude errors in the analyses.

OBJECTIVES

The main objective of this project is to improve lower tropospheric analyses by
assimilating near-surface wind observations from 80m anemometric wind farm
towers, as well as 10m wind observations from operational surface stations in the
hybrid ensemble variational data assimilation system (EnVar) developed at
Environment Canada. To achieve this, it is necessary to:

1) Examine the EnVar background error covariances and evaluate near-surface
flow correlation with the upper air atmosphere;

2) Develop an observation operator which includes a statistical
representativeness error correction;

3) Validate the method whereby observation system experiments (OSEs) are
performed using near-surface wind observations and verified against non-
assimilated collocated radiosondes to assess the quality of corrections.

BACKGROUND ERROR STATISTICS

The background error statistics used in EnVar 75
comprise a stationary homogenous — NMC
component, as in a 3D-Var, and a flow —— Enb
dependent component from an Ensemble
Kalman Filter (EnKF). The examination of the
error statistics (Figure 1) shows that the
vertical structures of mean variances from the
stationary homogenous (NMC) and EnKF
components differ near the surface where the
EnKF underestimates the wind, temperature
and surface pressure variances. This can be 844
attributed to the fact that the surface -
analyses are currently not perturbed in the -
EnKF. This finding indicates that near-surface 1000 bl Lo
observations have a smaller impact on 0 1 2 3
analyses using the EnKF statistics. Variances
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Figure 1: vertical profiles of the zonal wind variances from the NMC and EnKF methods (January
2011). For comparative purpose, the NMC error statistics are scaled by a factor of 0.6.

The evaluation of near-surface flow correlation with the upper air atmosphere
reveals that the vertical structure of EnKF error correlations depends on local
atmospheric stability. Indeed, Figure 2 shows that the EnKF vertical correlation
length depends on the bulk Richardson number.
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Figure 2: Vertical correlations length for zonal winds over land during July - August 2011.

This study also reveals that the EnKF background error covariances are sensitive
to ensemble size. Figure 3 shows that, even when using 192 members,
localization is still needed to remove spurious long-distance error correlations,
especially over complex terrain.
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Figure 3: horizontal view of the near-surface zonal wind analysis increment for a Tm/s wind
innovation during a high pressure system over Oklahoma (USA). From left to right, the panels
show the results for 24, 48, 96 and 192 ensemble members.

Figure 4 (top) shows that the EnKF can capture dynamic features (e.g. coherent
tilted increments associated with baroclinic structures) and the temporal correla-
tions enable the increments to evolve with the meteorological system (not
shown). The cross-correlations are also more pronounced in the EnKF error
statistics (bottom) and thus, its multivariate impact for single near-surface
observation is significantly higher in the vertical for all prognostic variables.
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Figure 4: zonal cross section of the near-surface zonal wind (above) and temperature (below)
analysis increments for a 1Tm/s wind innovation (low pressure system over the Atlantic Ocean).
Results from NMC (left) and EnKF (right) error covariances are presented.
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Figure 5: vertical profile of the NMC correlations for zonal wind and temperature.

OBSERVATION OPERATOR

To make appropriate comparisons between observations and model variables, the
observation operator developed in this work involves vertical and horizontal
operators: H(x)=H, (H,(x)).

1. Vertical operator

Forecast outputs are vertically interpolated to the instrument height based on
Monin Obukhov similitude theory. As temperature stratification and heat fluxes at
the surface have an important impact on vertical wind profiles, flow stability
properties derived from predicted meteorological variables are integrated in the
interpolation. As proposed by Bedard (2010), the dimensionless stability function
is considered constant in height and is approximated using wind intensity
forecasts (U, and U,) from the model levels above (z,) and below (z,) the
observation. The flow stability correction term for momentum () is integrated
in the logarithmic vertical interpolation to estimate the anemometer level wind
speed (see equations 1-3), thus replacing the usual vertical linear interpolation.
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where , = kU, -Uy) , (2)
ln(ZZ/Zl)

and W _ (U, ln(zl/zo) - U, ln(zz/zo)) | (3)
(Uz - Ul)

On the other hand, the wind direction is considered to vary linearly with height,
as observed when analysing observations from tall wind farm towers.

2. Horizontal operator

Methods using multiple regressions can be used to reduce forecast errors as is
done in model output statistics (MOS) methods. Over complex terrains where
topographic features are not well resolved by the model, horizontal interpolation
methods (e.g. bilinear interpolation) can be replaced by using geo-referenced
weights assigned to the surrounding NWP grid points (Bédard et al., 2012). This
Geophysical MOS (GMOS) is a multi-point linear regression where the horizontal
interpolation is expressed as:

H, (X) = E(Ai 'Xi) +B (4)

where the predictors here are the zonal or meridional wind components at
surrounding grid points, X, and A. are the weights obtained from multiple
regressions while B is a bias correction. The latter could be viewed as a static
observation bias correction.

RESULTS

The forecast RMSE is decomposed into bias, amplitude (difference between
forecasted and measured variability) and residual components (random errors):
see equation 5. Overall from Table 1, MOS reduces the bias and slightly reduces
the STD. As it is trained by minimizing the entire RMSE, MOS struggles to reduce
both the amplitude and residual errors: it sometime smoothes the forecast to
limit high residual errors, and thus degrades amplitude errors.

RMSE? = Bias? + STD? = Bias? + Amplitude? + Residual? (5)
Training RMSE BIAS STD |AMPLITUDE |RESIDUAL Validation |RMSE [BIAS STD |AMPLITUDE |RESIDUAL
Bilinear 2.42 11.042.08 0.81 1.90 Bilinear 2.42 11.15|2.04 0.79 1.86
Bilinear+MOS | 1.74 | 0.00 | 1.74 0.80 1.48 Bilinear+MOS | 1.76 |0.321.73 0.84 1.46
GMOS(2x2) 1.65 | 0.00 | 1.65 0.69 1.45 GMOS(2x2) 1.68 | 0.29 | 1.66 0.73 1.45
GMOS(3x3) 1.59 10.00|1.59 0.63 1.42 GMOS(3x3) 1.64 | 0.25]1.62 0.67 1.44
GMOS(4x4) 1.56 [ 0.00|1.56 0.59 1.41 GMOS(4x4) 1.63 | 0.25[1.61 0.63 1.45
GMOS(5x5) 1.53 | 0.00|1.53 0.56 1.40 GMOS(5x5) 1.63 1 0.25[1.60 0.61 1.46

Table 1: Zonal wind error characteristics (m/s) using different observation operators for tall
anemometer towers. Left (right) panel show results using the training (validation) dataset.

On the other hand, GMOS considerably reduces the bias and both STD components
(amplitude and residual errors) that can be attributed to representativeness
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Figure 6: MOS and GMOS RMSE improvement scores (relative to Bilinear) using different
configurations (from 2x2 to 5x5 grid points) as a function of the size of the training dataset.

Considering that the difference between MOS and GMOS is only the sophistication
of the horizontal interpolation scheme to take into account the sub-grid scale
topographic interactions with the flow, the significant performance differences
between these two observation operators are essentially due to the reduction of
representativeness errors by the geo-referenced statistical correction.

FUTURE WORK

In future work, the method will be validated by performing and verifying OSEs
using collocated near-surface wind and radiosonde observations.




