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 Retrieval versus Radiance Assimilation 
    

 Mars Reanalysis Research Goals 
 Created a 4-dimensional Mars weather and climate reanalysis by assimilating 

spacecraft observations into a Mars Global Circulation Model.  

  Understand the characteristics and locations of any temperature biases between 

spacecraft data and the model, and improve physical parameterizations in Mars 

models to facilitate the match between observations and model output. 

 Address scientific questions involving atmospheric predictability, origins of dynamical 

instability, aerosol (dust and ice) distribution, traveling wave activity, thermal tides,  

and genesis and decay of dust storms. 

 

 Mars Weather and Climate Reanalysis 

• Finite volume dynamical core 

• 6°x5° (60x36) longitude-latitude resolution 

• 28 vertical levels with hybrid p / σ vertical 

coordinate 

• Radiatively active dust tracers; water ice clouds 

are optionally radiatively active. 

• Options for interactive dust parameterization with 

lifting and sedimentation. 
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 Local Ensemble Transform Kalman Filter (LETKF)  
      

Analysis at a given 

grid point is 

determined from the 

background at that 

point plus a weighted 

sum of observation 

increments within a 

localization radius.   

The LETKF (Hunt et al., 2007) is an efficient implementation of the Ensemble Kalman Filter (EnKF) suitable for 

operational Numerical Weather Prediction, and is competitive with state-of-the-art assimilation systems. 

• Background, or forecast, errors are described by an ensemble of MGCM states, and evolve with the flow (an 

important advantage of ensemble data assimilation methods!). Inflation of the ensemble spread helps account for 

model error. 

• Observation errors have both random and systematic components, and include instrument error and errors of 

representativeness. Gaussian localization (600 km in horizontal; 0.4 log P in vertical) of observation errors 

ensures that an observation’s influence wanes away from the analysis grid point. 

• Varying the dust distribution and water ice cloud strength among the 16 ensemble members improves the 

ensemble spread of dynamically stable regions of the atmosphere such as the tropics. 

• Adaptive inflation (Miyoshi, 2010)  estimates the multiplicative inflation parameter using statistics of observation 

and forecast errors and ensemble spread, allowing inflation values to vary in space and time. 

• Empirical bias correction (Danforth et al., 2007) of the MGCM based on analysis increments accounts for model 

error.  Corrections (based on long-term differences between analyses and forecasts) are applied every analysis 

step, as if they were part of the model itself. 

Adaptive  Inflation 

Parameter for TES 

Assimilation 

Background Image: spatial coverage of 

TES observations (along MGS orbit) in 6 

hour time period; MCS coverage is similar 

MGCM Levels and  

TES & MCS 

Observation Levels 

 

 Spacecraft Observations 
    

 Implementation 

Thermal Emission Spectrometer (TES) Mars Climate Sounder (MCS) 

Observations from 1997-2006. Observations from 2006-present. 

Nadir sounder. Limb sounder. 

Temperature retrievals at 19 vertical levels 

up to 40 km; column dust opacity. 

Temperature, dust, and water ice retrievals 

at 105 vertical levels up to 80 km. 

Observation error estimated at 3 K;  

original PDS retrieval characteristics  

not well known. 

Random error < 1K at elevations below 50 

km; estimated  systematic error of 1-3 K. 

Plotted are ensemble mean temperatures [K] in NH Autumn, MY 25 for TES. 

• 4D-LETKF considers observations at correct hourly timeslot.  

• Superobservations combine nearby observations into a single value, and reduce the 

random component of observation error. 

• Scaling of surface pressure increments ensures mass conservation. 

Methods for improving assimilation system performance: 
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Steven J. Greybush: sjg213@psu.edu 

Background: NH Late Autumn ~3.5 km Temperature (Shading), Winds (Vectors), and Terrain (Contours) 

 EOF Retrieval Assimilation 

Level 20 (~3.5 km) Eddy Winds (vectors), Temperatures 

(shading every 2 K), Eddy Surface Pressure (contours) 

Synoptic maps of eddy fields provide 

insights on the traveling weather systems 

that help initiate dust storms.  We 

demonstrated that data assimilation 

analyses using different initial conditions 

and aerosol assumptions converge about 

a unique synoptic state. 

 

Analyses are also verified against 

independent Radio Science profiles. 

It is better to use radiances than retrievals because 

Radiances are available sooner, have uncorrelated errors, and are independent of the prior. 

Retrieved temperatures contain vertical smoothing, correlated errors, and prior information. 

But it is better to use retrievals because 

Using retrievals reduces complexity in the H-operator, reduces data volume, allows arbitrary cloud clearing 

and retrieval methods and makes the assimilation system more modular.   

Using EOFs from the retrieval scheme can reduce data volume and reduces vertical interpolation errors. 

The averaging kernel (AK) concept allows removing the influence of the prior (allowing for interactive 

retrievals) and rotating to a representation where the obs. errors are uncorrelated. 

221 retrievals sampled 

from 6 hour period 

Averaging Kernel Method (after Rodgers, 2000) 

• Convert standard retrievals into "observations" with expected errors that should be zero mean, uncorrelated, and 
unit variance, and independent of the background or prior. 

• Define a corresponding obs-function (or H-operator) that is a weighted sum of the temperatures on the radiative 
transfer model vertical grid. 

• No changes to the assimilation method are needed, except to interpolate to the radiative transfer model vertical grid and to calculate the 
weighted sum. 

• Projecting onto EOFs used by the retrieval can reduce the number of observations 

• We plan to compare to radiance assimilation using the OSS forward model, as well as conduct “interactive 
retrievals” using forecasts from data assimilation as a prior. 

• Based on ideas in Rodgers' book, "Inverse Methods for Atmospheric Sounding: Theory and Practice”. 

For further details: 
Hoffman, R. N., 2010: A retrieval strategy for interactive ensemble data assimilation. arXiv, (1009.1561v1 [physics.ao-ph]), 1–13, http://arxiv.org/abs/1009.1561. 
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Required Data 

Data Assimilation Interface 

Forecast as Prior (Interactive Retrievals) 

With assimilation: 

Free Run (without assimilation): 

 Summary and Ongoing Work 

• Short term (0.25 sol) forecasts from analyses are superior to those of 

a freely running MGCM when compared to independent observations. 

• Biases (imperfect aerosol) between the MGCM and obs are 

significant part of forecast RMSE. 

 GFDL Mars Global Circulation Model (MGCM) 
    

OSS retrievals for TES include error estimates and averaging kernel information, allowing us 

to more properly account for the retrieval process in the assimilation system. 

Averaging 

Kernel 

Rotated 

Averaging 

Kernel 
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Here, we provide a proof 

of concept by assimilating 

a single OSS temperature 

profile in the traditional 

way, in the averaging 

kernel framework, as well 

as using the rotated 

averaging kernel. 

We consider in our methodology: 

- Representativeness errors. 

- Levels in the retrieval pressure grid 

below the surface. 

- Superobservations. 

   The LETKF H-operator has been generalized: 

First, interpolate the model temperature to the retrieval 

location and pressure levels 

Second, if using EOFs remove an overall mean      

temperature profile  

Third, applies weights to each temperature to compute 

observation space quantities 

These weights are part of the observation data structure 

For example, in the original assimilation strategy the 

weight is 1 at the observation level and 0 elsewhere;      

or we can apply a box car average; or any other linear 

combination of the temperatures 

Fourth, for localization assign to vertical level of max. 

weight.  

Analysis Increments: 


