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Abstract

The standard implementation of particle filters is unfeasible in large dimensional geophysical systems. The ensemble tends to collapse in few particles (degeneracy
of weights) when the number of independent observations is large. An alternative is to use proposal densities other than the prior. In this work we use simple
nudging and 4dvar as improved proposal densities. The results suggest that the use of 4dvar with an additional equal-weights step is promising.

Particle filters Conditioning on the transition probability

Particle filters are Monte Carlo implementations of Bayes theorem, in which the prior probability In PF, usually one does not worry about the background and uses the transition probability as
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with 3 options for proposals:

One can use proposal densities other than the prior and weight accordingly. In particular, these
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Conditioning on the background probability
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In the absence of model error we can estimate the posterior p(X |y ) as Coming from families of solutions of the type:
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Even the optimal proposal density degenerates. One can set a target weight, propose an
‘incomplete’ 4dvar solution x%: — X%n + CK(y%n — x%n) and solve for c from the
equation:
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(See [1] for more details on how to add a stochastic component to this deterministic move).
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