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Ensemble square-root Kalman filters are currently the

computationally most efficient ensemble-based Kalman

filter methods. In particular, the Ensemble Transform

Kalman Filter (ETKF) [1] is known to provide a minimum

ensemble transformation in a very efficient way. In

order to further improve the computational efficiency, the

Error-Subspace Transform Kalman Filter (ESTKF) was

developed [2]. The ESTKF solves the estimation prob-

lem of the Kalman filter directly in the error-subspace

that is represented by the ensemble. As the ETKF, the

ESTKF provides the minimum ensemble transformation,

but at a slightly lower cost. Both, the ETKF and ESTKF

are related to the SEIK filter [3]. This filter shows small

deviations from the minimum transformation, but is

similarly efficient as the ESTKF.

• The Error Subspace Transform Kalman filter (ESTKF)

is an efficient ensemble square-root filter that com-

putes the weights for the ensemble transformation di-

rectly in the error subspace. The transformations are

identical to those of the ETKF.

• The compute performance of the ETKF can be im-

proved by using a projection matrix of size N ×N
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• When the symmetric square root is used, the SEIK

filter shows very similar results to those of the ETKF

and ESTKF. With Cholesky decompositions, the qual-

ity of the SEIK filter deteriorates.

• An implementation of the ESTKF is available in the

release of the Parallel Data Assimilation Framework

(PDAF) [5, 6].

The figure below shows a comparison of the weight matrices

used for the ensemble transformation for a single analysis step.

All matrices are projected to be of size N × N, e.g. for ESTKF

W = TCT
T and for ETKF W̃ = T̃C̃. ETKF’s W is closest to

the Identity, the transformation of the ESTKF is identical up to

numerical precision. SEIK’s W differs more from the identity in

case of a Cholesky square-root (SEIK-chol). With the symmetric

square-root (SEIK-sym), the transformation in SEIK is minimally

different from that of the ETKF and ESTKF, but depends on the

ensemble ordering.
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SEIK-sym: Transformation matrix
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transformation matrices difference: SEIK-ETKF
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Notation:

State vector x
f ∈ R

n; Ensemble of N members X
f =

[

x
f (1), . . . ,x f (N)

]

; Matrix of ensemble means X f =
[

x
f , . . . ,x f

]

The error subspace has a dimension of N−1. The ETKF

uses an ensemble representation of the error subspace

of N ensemble perturbations. The ESTKF and the SEIK

filter directly use a basis of the error subspace of dimen-

sion N − 1. The difference between ESTKF and SEIK is

caused by the distinct projection matrices T and T̂.
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Ã
−1 = (N −1)I+(HZ

f )T
R

−1
HZ

f
A

−1 = (N −1)I+(HS
f )T

R
−1

HS
f

Â
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Ensemble transformation
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ĈT

T

with square-root

C̃C̃
T = Ã CC

T = A ĈĈ
T = Â

The symmetric square root C = UΛ
−1/2

U
T from the singular value decomposition UΛV

T = A
−1 can be used in all cases.

All filters compute a square root of the transform matrix

(Ã, A, Â). These matrices are distinct, but the ensemble

transformations in ETKF and ESTKF are identical if the

symmetric square root is used for both filters.

Twin experiments were conducted using the nonlinear

Lorenz96 model [4] implemented in PDAF [5, 6]. Syn-

thetic observations of the full state were generated from

a model run. Observations were assimilated at each

time step over 50000 time steps. For SEIK, configura-

tions with either symmetric square root or with a square-

root based on Cholesky decomposition were used. The

global formulations of the filters were used.
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The figure shows mean RMS errors as functions of the

ensemble size and forgetting factor (covariance infla-

tion). As expected, the results from ESTKF and ETKF

are almost identical. The differences are only caused

by the finite precision of the numerical computations.

The SEIK filter with symmetric square root provides

very similar results. Errors from the SEIK filter using

a Cholesky square root of Â are larger. This is caused

by an inferior ensemble quality in which a small number

of ensemble members carry most of the variance.
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