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measures the number of samples that have ar'i:y1 significance

(TOA) radiances in 8641 channels. In many cases it is
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Figure 2. Linearisation error normalised by the error standard deviation of the channel, o,
as a function of perturbation size (a fraction of o) ). J

Gaussian mixture resampling

In order to have control over the effective sample size we

We have demonstrated a sampling approximation to mutual

Linearisation error is defined as Hox + A(x) — A(x + &X) , where h is the non-linear information which is free from assumptions about linea rity. This

observation operator and H is the linearised observation operator.

Estimating Mutual information

shows that for some channels the linear approximation is

Linear approximation T indeed poor
annel selection algorithm y3 : : :
When the linear/Gaussian approximation holds Ml can be 5 have modified the channel selection algorithm to — . :
. o . e . Although this estimate is free from assumptions about the
shown to be: 1. Sample N times from prior distribution, x.~N(x,,B) for j=1:N, and set resample from the posterior distribution after each ’ o ot he off ; ' ]
1 W, =1/N forj=1:N and i=1:M. channel selection. We wish to preserve any non-Gaussian inearity it does suffer from the effects of undersampling when

MI™ = Eln |BP," |, (2) the region of high probability is small.

2. Sample M times from likelihood, y;,~N(h(x,),R) for i=1:M. structure and so we fit a Gaussian mixture (GM) to the

. Resampling from the posterior distribution after each

where B and P, are the prior and analysis error covariance
matrices respectively. This approximation has been used in
previous studies of channel selection (e.g. Rabier et al.

3. Transform prior sample to observation space using RTTOV, h(x;) for
J=1:N.

4. Update the weights of the prior sample given the observations (one

distribution with the number of components specified by
the sample characteristics. Resampling from this
distributions resets ess to N.

channel is selected is shown to alleviate this problem.

Ch&ﬂﬂ@l, C, atatime . . . . uzing sampling metho using linear metho
2002). ) An example of GM resampling is shown in fig. 4 and the ) MLusing saling wethoc R
e, =const, xpl-0. 305 hGg)IRA ()] effect on channel selection is given in fig. 5 : .
Non-linear aPPTOXImatlon 5. Approximate the marginal distribution before normalising the s B 1
When the relationship between x and y is non-linear, as is Bl N .
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the case for satellite observations, eqn (2) may no longer = 5
6. Calculate Ml for each channel using eqn (3). *Contact information W LTI (LT — .

hold. Instead we can estimate MI by sampling from both
the prior and likelihood distributions.

7. Select channel with highest MI and update prior given the
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