falcON

a Cartesian FMM for the low-accuracy regime

College Park, 28th April 2004

Journal of Computational Physics, 179, 27-42 (2002)

Walter Dehnen (Leicester) walter.dehnen@astro.le.ac.uk

N-body simulations in astronomy

HCG87: a group of galaxies

 $\omega {\rm Cen}:$ a globular cluster

properties of stellar systems

- simple physics: Newtonian gravity
- very inhomogeneous
 - ⇒ large dynamic range
- \triangleright dynamically young ($t_{dyn} \simeq Myr-Gyr$)
- well approximated as ensembles of point masses
 - ⇒ well described as Hamiltonian systems
 - $(\Rightarrow$ need symplectic time integration)

$$\begin{split} \mathsf{H} &= \sum_{i=1}^{N} \frac{m_i}{2} \left[\boldsymbol{v}_i^2 - \sum_{j \neq i} \frac{G m_j}{|\boldsymbol{x}_i - \boldsymbol{x}_j|} \right], \qquad \boldsymbol{v}_i = \dot{\boldsymbol{x}}_i = \frac{\boldsymbol{p}_i}{m_i} \end{split}$$
with $N \simeq 10^{5-20}$

equation of motion in continuum (mean-field) limit:

$$0 = \frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} \cdot v - \frac{\partial f}{\partial v} \cdot \frac{\partial \Phi}{\partial x}$$

collisionless Boltzmann equation (CBE)

ightarrow f(x, v, t): distribution function (density in phase space)

 $ightarrow \Phi(x)$: mean-field gravitational potential

both are related via the **Poisson equation**:

$$\nabla^2 \Phi(\boldsymbol{x}) = 4\pi G \int d^3 \boldsymbol{v} f(\boldsymbol{x}, \boldsymbol{v}, t)$$

two-body relaxation

How good is the continuum description?

- stellar encounters deflect trajectories
 - ⇒ stellar orbits get randomized
 - ⇒ Maxwellian velocity distribution
- two-body relaxation time:

 $t_{\rm relax} \simeq 0.1 \frac{N}{\log N} t_{\rm dyn}$

1 collision-dominated stellar dynamics

- $ightarrow t_{
 m relax} \lesssim$ age of system
- \Rightarrow continuum limit not applicable
- \Rightarrow must simulate Hamiltonian directly:
 - ▷ force computation is $\mathcal{O}(N^2)$
 - \Rightarrow computational effort limits $N \leq 10^5$
 - close encounters are important
 - \Rightarrow time integration becomes tedious

2 collisionless stellar dynamics

- $\triangleright t_{relax} \gg age of system$
- ⇒ continuum limit applicable
- ⇒ solve CBE & Poisson equation

'collisionless' N-body simulations

How to solve the CBE?

- \triangleright *f* is 6D & very inhomogeneous
 - \Rightarrow (Eulerian) grid methods are useless
 - ⇒ Lagrangian method ('method of characteristics'):
- ▷ sample N trajectories { μ_i, x_i, v_i } from f(x, v, t = 0)
- \triangleright solve equations of motion $\ddot{x}_i = -\nabla \Phi(x_i, t)$
- \triangleright CBE: $\mu_i = \text{const}$ along trajectories
 - $\Rightarrow f(x, v, t)$ is represented by $\{\mu_i, x_i(t), v_i(t)\}$
 - \Rightarrow *f* is unknown
 - \Rightarrow moments of f can be estimated
 - $\Rightarrow N \ll N$ is numerical parameter
 - ⇒ artificial two-body relaxation

How to solve the Poisson equation?

$$\nabla^2 \Phi(\mathbf{x}) = 4\pi G \int d^3 v f(\mathbf{x}, \mathbf{v}, t)$$

- 1 grid techniques (FFT, multigrid):
 - ▷ fast: $\mathcal{O}(n_{\text{grid}} \log n_{\text{grid}})$
 - \triangleright periodic (\Rightarrow cosmology)
 - problem: inhomogeneity (but: adaptive multigrid)
- 2 basic functions (using Y_{lm}):
 - ▷ fast: $\mathcal{O}(N n_{\text{basis}})$
 - problems: central singularity, spherical symmetry
- 3 Greens-function approach:

$$\Phi(\boldsymbol{x},t) = -G \int d^{3}\boldsymbol{x}' d^{3}\boldsymbol{v} \frac{f(\boldsymbol{x}',\boldsymbol{v},t)}{|\boldsymbol{x}-\boldsymbol{x}'|}$$

- general & adaptive
- problem: *f* is unkown
- \Rightarrow estimate (ϵ : softening length)

$$\Phi(\boldsymbol{x}_i,t) pprox - \sum_{i \neq j} rac{G \, \mu_j}{\sqrt{[\boldsymbol{x}_i - \boldsymbol{x}_j(t)]^2 + \epsilon^2}}$$

force softening to

- \triangleright optimize force estimate (since *f* is unknown)
- suppress (unphysically) close encounters
- ⇒ force-estimation error (unavoidable)

true gravity of Hernquist model

estimation error with $N = 10^6$

computing the forces

 \triangleright Greens-function approach \rightarrow Hamiltonian:

$$\mathsf{H} = \sum_{i=1}^{\mathsf{N}} \frac{\mu_i}{2} \left[v_i^2 - \sum_{j \neq i} \frac{G \,\mu_j}{\sqrt{|x_i - x_j|^2 + \epsilon^2}} \right]$$

- \triangleright how to evaluate $\Phi \& \nabla \Phi$?
- can tolerate approximation error << estimation error
 use approximative methods
- 1 direct summation (not approximative):
 - ▷ slow: $\mathcal{O}(N^2)$ (but: GRAPE)
 - ▷ (unnecessarily) accurate
 - used in collisional N-body codes
- 2 Barnes & Hut (1986) tree code:
 - \triangleright use hierarchical tree (usually: oct-tree) \Rightarrow fully adaptive
 - \triangleright fast(er): $\mathcal{O}(N \log N)$
 - most common method in astrophysics
 - violates Newton's 3rd law
 - ⇒ total momentun not conserved
- 3 traditional fast multipole method (FMM):
 - \triangleright use hierarchy of cartesian grids \Rightarrow not fully adaptive
 - \triangleright compute gravity via spherical multipoles & complex Y_{lm}

 \Rightarrow numerics complicated & cumbersome

formally O(N), but slower than tree code (for astrophyiscal applications, see Capuzzo-Colcetta & Miochi, 1998, JCP, 143, 29)

approximation error with $N = 10^6$

details of the tree code

1 preparation phase

1.1 build a hierarchical tree of cubic cells ▷ cost: O(N log N)

- 1.2 pre-compute multipole moments etc
- 2 force computation: 'tree-walk'
 - ▷ for each body: compute force due to root cell
 - ▷ to compute force from cell:
 - if body is **well-separated** from cell:

compute force from multipole moments

otherwise

sum forces from daughter cells (recursive)

▷ cost: $\mathcal{O}(\log N)$ per body $\Rightarrow \mathcal{O}(N \log N)$

▷ the tree code is wasteful:

forces of neighbours are similar yet independently computed

details of the FMM

here I describe traditional Greengard & Rokhlin (1987) FMM

1 preparation phase

- 1.1 build a hierarchy of cartesian grids
- 1.2 pre-compute multipole moments etc (upward pass)
- 2 force computation

2.1 interactions

- on each grid level:
- perform 'intermediate-field' interactions: compute & accumulate multipoles of gravity field

2.2 downward pass

- ▷ pass field-multipoles down the hierarchy
- compute forces on finest grid

theoretical O(N) not demonstrated in practice
 not competetive with tree code in low-accuracy regime

details of falcON

- ▷ hybrid of tree code & FMM
- takes the better of each method
- 1 preparation phase (as for tree code)
- 1.1 build a hierarchical tree of cubic cells
 ▷ cost: O(N log N)
- 1.2 pre-compute multipole moments etc
- 2 force computation

2.1 interaction phase

- 'catch' all body-body interactions in well-separated node-node interactions:
 - if node-node interaction is executable execute it: accumulate field tensors
 - otherwise

split it & continue with child interations (recursive)

 \triangleright cost: (better than) $\mathcal{O}(N)$, dominates

2.2 evaluation phase

- pass field tensors down the tree
- compute forces at body positions
- \triangleright cost: $\mathcal{O}(N)$

 $ightarrow \sim 10$ times faster than tree code or FMM (at low accuracy)

numerics of falcON

Wanted:

$$\Phi(\boldsymbol{x}_i) = -\sum_{j\neq i} \mu_j g(\boldsymbol{x}_i - \boldsymbol{y}_j),$$

Taylor expand g about $\mathbf{R} = x_0 - y_0$

$$g(\boldsymbol{x}-\boldsymbol{y}) = \sum_{n=0}^{p} \frac{1}{n!} (\boldsymbol{x}-\boldsymbol{y}-\boldsymbol{R})^{(n)} \odot \boldsymbol{\nabla}^{(n)} g(\boldsymbol{R}) + \mathcal{R}_{p}(g),$$

Insert & sum over source cell B

$$\Phi_{\mathsf{B}\to\mathsf{A}}(x) = -\sum_{m=0}^{p} \frac{1}{m!} (x - x_0)^{(m)} \odot \mathsf{C}^{m,p} + \mathcal{R}_p(\Phi_{\mathsf{B}\to\mathsf{A}})$$
$$\mathsf{C}^{m,p} = \sum_{n=0}^{p-m} \frac{(-1)^n}{n!} \nabla^{(n+m)} g(R) \odot \mathsf{M}_{\mathsf{B}}^n,$$

$$\mathbf{M}_{\mathsf{B}}^{n} = \sum_{\boldsymbol{y}_{i} \in \mathsf{B}} \mu_{i} (\boldsymbol{y}_{i} - \boldsymbol{y}_{0})^{(n)}.$$

(Warren & Salmon 1995: Comp. Phys. Comm, 87, 266)

- \sum_{m} : evaluation of gravity, represented by the **field tensors** $\mathbb{C}^{m,p}$, at position \boldsymbol{x}
- \sum_{n} : interaction between source cell B, represented by the **multipoles** M_{B}^{n} , and the sink cell A.

Difference to tree code:

- \triangleright expansion in x (tree code: $x \equiv x_0$)
- mutuality of interactions

gravity between well-seperated nodes

two well-separated cells

If $|\mathbf{R}| > r_{A,crit} + r_{B,crit}$ with $r_{crit} = r_{max}/\theta$,

 $\Rightarrow |x-y-R| < \theta |R| \forall x \in A, y \in B \&$ Taylor series converges force error of individual interaction:

$$\begin{aligned} |\boldsymbol{\nabla}\mathcal{R}_{p}(\boldsymbol{\Phi}_{\mathsf{B}\to\mathsf{A}})| &\leq \frac{(p+1)\theta^{p}}{(1-\theta)^{2}} \frac{\mathsf{M}_{\mathsf{B}}}{R^{2}} \\ &\propto \frac{\theta^{p+2}}{(1-\theta)^{2}} r_{\mathsf{B},\mathsf{max}}^{d-2} \propto \frac{\theta^{p+2}}{(1-\theta)^{2}} \,\mathsf{M}_{\mathsf{B}}^{(d-2)/d} \end{aligned}$$

> standard tree-code & FMM practice: $\theta = \text{const}$

- ⇒ relative error controlled
- \Rightarrow absolute error increases with M_B
- ⇒ total error dominated by few interactions with large cells
- \Rightarrow better:
 - \triangleright balance **absolute** individual errors by $\theta = \theta(M)$ with

$$\frac{\theta^{p+2}}{(1-\theta)^2} = \frac{\theta_{\min}^{p+2}}{(1-\theta_{\min})^2} \left(\frac{\mathsf{M}}{\mathsf{M}_{tot}}\right)^{(2-d)/d}$$

 \Rightarrow reduce total error

accuracy vs. CPU time

mean (dashed) and 99 percentile (solid) relative force error

 $\varepsilon \equiv |a_{\text{approx}} - a_{\text{exact}}|/a_{\text{exact}},$

versus the CPU time (Pentium III/933Mhz in **2001**) for a galaxy (*left*) and a group f galaxies (*right*), sampled with (total) $N = 10^4$ (*top*), $N = 10^5$ (*mid-dle*), or $N = 10^6$ (*bottom*). We used either $\theta = \text{const}$ (*open triangles*) or $\theta = \theta(M)$ (*solid squares*). The symbols along each curve correspond, from left to right, to values for θ or θ_{\min} of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8.

performance

CPU time per body (Pentium III/500Mhz in **2000**) versus N for a galaxy group.

what complexity?

▷ 8-folding $N \Rightarrow N_I \rightarrow 8N_I + N_+$ and thus:

$$\frac{\mathrm{d}N_I}{\mathrm{d}N} \simeq \frac{N_I}{\mathrm{N}} \frac{\Delta \ln N_I}{\Delta \ln N} \approx \frac{N_I}{\mathrm{N}} + \frac{N_+}{N8 \ln 8},$$

with solution

$$N_I = c_0 N + \frac{N}{8 \ln 8} \int \frac{N_+}{N^2} \, \mathrm{d}N$$

▷ B&H tree code: $N_+ \propto N$ $\Rightarrow N_I \propto N \log N$ ▷ Here: $N_+(N)$ grows sub-linear at large N $\Rightarrow N_I \propto N$

comparison with other methods used in astrophysics

CPU time per body (**2001**) versus N for various techniques. Note that there are differences in the hard- & software, stellar system, and accuracy requirements.

by **2003/2004**: falcON is \sim 3 times faster, but GRAPE-5 tree not.

comparison with FMM

comparing under same conditions (bodies uniform in a cube)

$$E = \left[\sum_{i} \left(\Phi_{i,\text{direct}} - \Phi_{i,\text{approx}} \right)^2 / \sum_{i} \Phi_{i,\text{direct}}^2 \right]^{1/2}$$

 \triangleright low-accuracy regime: ~ 10 times faster:

timing results (in seconds):

Ν	T^a_{FMM}	$T^a_{\rm direct}$	E^a	T^b_{falcON}	$T^c_{\rm direct}$	E^b
20000	13.3	233	$7.9 imes10^{-4}$	0.97	136	$3.7 imes10^{-4}$
50000	27.7	1483	$5.2 imes10^{-4}$	2.64	924	$3.3 imes10^{-4}$
200000	158	24330	$8.4 imes10^{-4}$	10.77	14694	$3.4 imes10^{-4}$
500000	268	138380	$7.0 imes10^{-4}$	29.42	91134	$3.7 imes10^{-4}$
1000000	655	563900	$7.1 imes10^{-4}$	58.34	366218	$3.5 imes10^{-4}$

^a FMM; data from Table I of Cheng et al. (1999: JCP, 155, 468)

^b falcON on a computer identical to that used by Cheng et al.

^c our own implementation of direct summation on the same computer

▷ high-accuracy regime:

falcON cannot compete with FMM

- \Rightarrow accuracy & performance depend on both $p \& \theta$
 - \triangleright FMM: fixed ' θ ', vary p

 \triangleright falcON: fixed p = 3, vary θ

 \Rightarrow high accuracy requires higher order p

summary

▷ falcON = hybrid of tree code & FMM

▷ new features:

explicitly exploits mutuality of gravity

- ⇒ reduces computational effort
- ⇒ requires novel tree-walking algorithm
- ⇒ conservation of Newton's 3rd law
- mass-dependent θ
 - \Rightarrow error balancing
 - \Rightarrow reduces cost to **better** than $\mathcal{O}(N)$
- $ightarrow \sim 10$ times faster than tree code or FMM

▷ publicly available

more dogmas

- balance errors
 - ⇒ reduce effort at given accuracy
- keep algorithm as simple as possible &
 - as complicated as necessary
 - \Rightarrow high-order may be unnecessary
- write efficient code
 - \Rightarrow avoid cache misses
 - \Rightarrow data structure design
 - \Rightarrow write generic code
 - \Rightarrow do not rely too much on compliler optimization
 - ⇒ template metaprogramming