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Fast Multipole Methods
• Originally proposed by Rokhlin and Greengard (1987) to efficiently evaluate  

sums of monopoles:

• FMM accelerates matrix vector 
products (sums) of the type 

X source point set

Y evaluation point set

Φ some function

• Original functions Φ for which 
FMM was developed were 
long-ranged and singular at the 
source point

• FMM relies on “separation of 
variables” to achieve speed
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Factorization

Expansion coefficients
Basis functions

Expansion center Truncation number

•Substitute in the product

•Rearrange summation 
order

•Inner sum does not 
depend on evaluation 
points
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Reduction of Complexity
Straightforward (nested loops):

Complexity: O(MN)

Factorized:

Complexity: O(pN+pM)

If p << min(M,N) then complexity reduces! 

•Remark: O(N) for fixed p.

•However, error grows with N

•For fixed error have to increase p with N

•For geometrically convergent series this introduces a factor of log N
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Conventional FMM
• Function Φ is singular and a uniformly valid factorization is not 

available

• Construct patchwork-quilt of overlapping approximations
Local and Multipole Expansions

• Partition sum into a piece that is computed directly and piece that 
uses factorization.

• Tree data-structures used to reduce the cost of the piece that must 
be computed directly to that computed via factorization

Translation operators convert one representation to another

• Achieve O(N) complexity for fixed p

• Remarks
Building data structures is O(N log N) 

For fixed error p could depend on N and make complexity O(N log N)
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G( yj) =
NX
i= 1

qi e
−kyj−xik2/h2

, j = 1, . . . ,M.

Fast Gauss Transform 
• FMM was applied to evaluate sums of Gaussians by 

Greengard & Strain (1989, 1991)

• Direct evaluation requires O(N2) operations.
• FGT reduces cost to O(N log N) operations.

⎡⎢⎢⎢⎣
G(y1)
G(y2)
...

G(yM )

⎤⎥⎥⎥⎦ =
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e−kx1−y1k

2/h2 e−kx2−y1k
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An =
1

n!

NX
i= 1

qi

µ
xi− x∗
h

¶n

Original FGT Factorization :Hermite
Expansion

• Gaussian kernel factorized into Hermite and Taylor expansions

where Hermite function hn(x) is defined by

• Exchange order of summations

where An is defined by

e−ky−xik2/h2
=

p−1X
n= 0

1

n!

µ
xi− x∗
h

¶n
hn

µ
y − x∗
h

¶
+ ²(p) ,

hn(x) = (−1) n
dn

dxn

µ
e−x2

¶
.
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NX
i= 1

qi

p−1X
n= 0

1

n!

µ
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h

¶n
hn

µ
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h

¶
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Anhn
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h

¶
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FGT obtained by applying FMM framework

• Local and “far-field” expansion

• Translation of Hermite expansion to Taylor expansion

• Box data-structures

• Our goal to use the FGT for problems in computer vision 
and pattern recognition

• Problems not restricted to 1-3 dimensions 
High dimensional “feature” spaces

• Need to use FGT in high dimensions

• FGT does not scale well with dimensionality
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Hermite Expansion in Higher Dimensions
• The higher dimensional Hermite expansion is the 

Kronecker product of d univariate Hermite expansions.

• Total number of terms is O(pd), p is the number of 
truncation terms.

• The number of operations in one factorization is O(pd). 

h0 h1  h2

h2h2h2h1h2h0

h1h2h1h1h1h0

h0h2h0h1h0h0

D=1 D=2 D=3 D>3

CSCAMM FAM04: 04/27/2004

Space Subdivision in FGT
• The FGT subdivides the space into uniform boxes and 

assigns the source points and target points into boxes.

• For each box the FGT maintain a neighbor list.

• The number of the boxes increases exponentially with the 
dimensionality. 

D=1 D=2 D=3 D>3
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FGT in Higher Dimensions
• The higher dimensional Hermite expansion is the product 

of univariate Hermite expansion along each dimension. 
Total number of terms is O(pd).

• The space subdivision scheme in the original FGT is 
uniform boxes. The number of boxes grows 
exponentially with dimension. Most boxes are empty.

• The FGT was originally designed to solve the problems 
in mathematical physics (heat equation, vortex methods, 
etc), where the dimension is up to 3.

• The exponential dependence on the dimension makes the 
FGT extremely inefficient in higher dimensions. 
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Improved Fast Gauss Transform
• Reconsider data structures and expansions needed
• Comparing Gaussians with conventional FMM Φ

Gaussian is not singular – it is infinitely differentiable!
Gaussians vanish exponetially quickly in the far-field

• Modified expansions
Local: Multivariate Taylor Expansions
Far field expansion is zero!

• Modified data structures
Data structures are not needed to separate domains of validity 
(expansions are valid throughout)
Rather need data structures to decide where to ignore the effect
of the Gaussian and to decide center of Gaussian
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Far Field Expansion is Zero
• The decay of the Gaussian kernel function is rapid.

Effect of Gaussian outside certain range can be safely ignored

• Time consuming translation operators in original FGT can 
be safely removed!
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Multivariate Taylor Expansions
• The Taylor expansion of the Gaussian function:

• The first two terms depend on xi or yj alone.

• The Taylor expansion of the last term is:

where α=(α1, , αd) is multi-index.

• The multivariate Taylor expansion about center x*:

• where coefficients Cα are given by

e−kyj−xik2/h2
= e−kyj−x∗k2/h2

e−kxi−x∗k2/h2
e2(yj−x∗) ·(xi−x∗)/h2

,

e2(yj−x∗) ·(xi−x∗)/h2
=

X
α≥0

2|α|
α!

µ
xi− x∗
h

¶αµyj − x∗
h

¶α
.

G(yj) =
X
α≥0

Cαe
−kyj−x∗k2/h2

µ
yj − x∗
h

¶α
,

Cα =
2|α|
α!

NX
i= 1

qie
−kxi−x∗k2/h2

µ
xi− x∗
h

¶α
.
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Fix p = 10, vary d = 1:20 Fix d = 10, vary p = 1:20
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Modified Factorization: Taylor Expansions
• The number of terms in multivariate Taylor expansion 

is            , asymptotically O(d p)

• Original expansion has O(pd) terms

• New expansion results in a big reduction for large d and 
moderate p

³
p+ d−1
d

´
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Space Subdivision Scheme
• The space subdivision scheme in the original FGT is uniform 

boxes. The number of boxes grows exponentially with the 
dimensionality.

• Need a data structure that 
Allows ignoring the far-field

Assigns each point to a local expansion center

• The space subdivision should adaptively fit density of the points.

• The cell should be as compact as possible.

• The algorithm should be a progressive one, 
Refined space subdivision obtained from previous one.

• Based on the above considerations, we develop a structure using the  
k-center problem.
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k-center Algorithm

• The k-center problem is defined to seek the “best” 
partition of a set of points into clusters (Gonzalez 1985, 
Hochbaum and Shmoys 1985, Feder and Greene 1988).

• The k-center problem is NP-hard but there exists a simple 
2-approximation algorithm.

Given a set of points and a predefined number k, k-center
clustering is to find a partition S = S1 ∪ S2 ∪ ∪ Sk that 
minimizes max1 ≤ i ≤ k radius(Si), where radius(Si) is the radius 
of the smallest disk that covers all points in Si.

Smallest circles
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Farthest-Point Algorithm
• The farthest-point algorithm (a.k.a. k-center algorithm) is 

a 2-approximation to optimal solution (Gonzales 1985).

• The total running time is O(kn), n is the number of points. 
It can be reduced to O(n log k) using a slightly more 
complicated algorithm (Feder and Greene 1988).

1. Initially randomly pick a point v0 as the first center and add it to the
center set C .

2. For i = 1 to k− 1 do
• For every point v ∈ V , compute the distance from v to the current
center set C = {v0, v1 , . . . , vi−1}: di(v, C) = minc∈C kv − ck.

• From thepoints V −C find a point vi that is farthest away from the
current center set C , i.e. di(vi,C) = maxvminc∈C kv − ck.

• Addvi to the center set C .
3. Return the center set C = {v0 , v1, . . . , vk−1} as the solution to k-center
problem.
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A Demo of k-center Algorithm

k = 4
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Results of k-center Algorithm

• The results of k-center algorithm. 40,000 points are 
divided into 64 clusters in 0.48 sec on a 900MHZ PIII PC. 
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More Results of k-center Algorithm

• The 40,000 points are on the manifolds.
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Properties of k-center Algorithm
• Computational complexity of k-center is O(n logk). 

Points are generated using uniform distribution. 

(Left) Number of points varies from 1000 to 40000 for k=64 

(Right) Number of clusters k varies from 10 to 500 for 40000 
points.
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Monomial Orders
• Let α=(α1, , αn), β=(β1, , βn), then three standard 

monomial orders:
Lexicographic order, or “dictionary” order:

α ≺lex β iff the leftmost nonzero entry in α - β is negative.

Graded lexicographic order:
α ≺grlex β iff ∑1 ≤ i ≤ n αi < ∑1 ≤ i ≤ n βi or (∑1 ≤ i ≤ n αi = ∑1 ≤ i ≤ n βi and α
≺lex β ).

Graded reverse lexicographic order:
α ≺grevlex β iff ∑1 ≤ i ≤ n αi < ∑1 ≤ i ≤ n βi or (∑1 ≤ i ≤ n αi = ∑1 ≤ i ≤ n βi and 

the rightmost nonzero entry in α - β is positive).

• Example: 
Let f(x,y,z) = xy5z2 + x2y3z3 + x3, then
w.r.t. lex: f(x,y,z) = x3 + x2y3z3 + xy5z2;
w.r.t. grlex: f(x,y,z) = x2y3z3 + xy5z2 + x3;
w.r.t. grevlex: f(x,y,z) = xy5z2 + x2y3z3 + x3.
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Horner’s Rule
• Horner’s rule (Horner, 1819) recursively evaluates the polynomial 

ap xp + + a1 x + a0 as:

(( (ap x + ap-1)x+ )x + a0. 

• costs p multiplications and p additions, no extra storage.
Reduces complexity from O(p2) to O(p)

• We do this for the multivariate polynomial iteratively using the 
graded lexicographic order. Costs C(p+d-1,d) operations  and  
storage. 1

↓ a ↓ b ↓ c

a b c

↓ a ↓ b ↓ c

a2 ab ac b2 bc c2

↓ a ↓ b ↓ c

a3 a2b a2c ab2 abc ac2 b3 b2c bc2 c3

Figure 1: Efficient expansion of the multivariate polynomials. The arrows point
to the leading terms.

x=(a,b,c)
x0

x1

x2

x3
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An Example of Taylor Expansion
• Suppose x = (x1, x2, x3) and y = (y1, y2, y3), then

x3
3x2x3

2x2
2x3x2

3x1x3
2x1x2x

3

x1x2
2x1

2x3x1
2x2x1

3

x3
2x2x3x2

2x1 x3x1 x2x1
2

x3x2x1

1

×

y3
3y2y3

2y2
2y3y2

3y1y3
2y1y2y

3

y1y2
2y1

2y3y1
2y2y1

3

y3
2y2y3y2

2y1 y3y1 y2y1
2

y3y2y1

1

4/34434/3484444/3

242442

222

1

×

≈

Constant
19 ops
Direct: 29ops

19 ops
Direct:29ops

19 ops
Direct: 29 ops

e2x·y =
X
α≥0

2|α|
α!
xαyα
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An Example of Taylor Expansion (Cont’d)
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NX
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qie
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=
NX
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Improved Fast Gauss Transform 

Step 1 Assign the N sources into K clusters using the farthest-point clus-
tering algorithm such that the radius is less than rx.
Step 2 Choose p sufficiently large such that the error estimate is less than

the desired precision ².
Step 3 For each cluster Sk with center ck, compute the coefficien ts:

Ckα =
2|α|

α!

X
xi∈Sk

qie
−kxi−ckk2/h2

µ
xi − ck
h

¶α

.

Step 4 Repeat for each target yj, find its neighbor clusters whose centers
lie within the range ry . Then the sum of Gaussians can be evaluated by the
expression:

G(yj) =
X

kyj−ckk<hρy

X
|α |<p

Ckαe
−kyj−ckk2/h2

µ
yj − ck
h

¶α
.

Control series truncation error

Control far field cutoff error

Collect the contributions from sources to centers

Summarize the contributions from centers to targets
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Error Bound of IFGT

• The total error from the series truncation and the cutoff 
outside of the neighborhood of targets is bounded by

|E(y)|≤
X

|qi|
µ
2p

p!

³rx
h

´p ³ry
h

´p
+ e−(ry/h)

2

¶
.

rx

rxry

Truncation error Cutoff error 

Sources

Targets
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Error Bound Analysis
• Increasing number of truncation terms p, reduces error

• Increasing k in the k-center algorithm, radius of source 
point clusters rx will decrease, until the error bound is less 
than a given precision.

• The error bound first decreases, then increases with 
respect to the cutoff radius ry.
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Experimental Result

• The speedup of the fast Gauss transform in 4, 6, 8, 10 
dimensions (h=1.0).
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Efficient Kernel Density Estimation
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Kernel Density Estimation (KDE)

• Kernel density estimation (a.k.a Parzen method, 
Rosenblatt 1956, Parzen 1962) is an important 
nonparametric technique.

• KDE is the keystone of many algorithms:
Radial basis function networks

Support vector machines

Mean shift algorithm

Regularized particle filter

• The main drawback is the quadratic computational 
complexity. Very slow for large dataset.
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Kernel Density Estimation

• Given a set of observations {x1, , xn}, an estimate of 
density function is

• Some commonly used kernel functions

• The computational requirement for large datasets is 
O(N2), for N points.

f̂n(x) =
1

nhd

nX
i= 1

K

Ãkx− xik
h

!
Bandwidth

Kernel function

Dimension

4 3 2 1 0 1 2 3 4 5

Rectangular Triangular Epanechnikov Gaussian
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Efficient KDE and FGT

• In practice, the most widely used kernel is the Gaussian

• The density estimate using the Gaussian kernel:

• Fast Gauss transform can reduce the cost to O(N logN) in 
low-dimensional spaces.

• Improved fast Gauss transform accelerates the KDE in 
both lower and higher dimensions.

KN (x) = (2π)−d/2e−
1
2kxk2 .
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Experimental Result

• Image segmentation results of the mean-shift algorithm 
with the Gaussian kernel.

Size: 432X294
Time: 7.984 s

Direct evaluation: 
more than 2 hours

Size: 481X321
Time: 12.359 s

Direct evaluation: 
more than 2 hours
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Object Tracking
• Goal of object tracking: find the moving objects between 

consecutive frames.

• A model image or template is given for tracking.

• Usually a feature space is used, such as pixel intensity, 
colors, edges, etc.

• Usually a similarity measure is used to measure the 
difference between the model image and current image.

• Temporal correlation assumption: the change between two 
consecutive frames is small.

Model image
Target image

Similarity function
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Image Representations
• Images are mapped into feature spaces.

• Feature spaces are described by the probabilistic density 
functions (p.d.f.).

• The p.d.f. is estimated using kernel density estimation:

• Accelerated using FGT. Details in Yang et al 2004.

Target Image Feature Space
p.d.f.

Model Image Feature Space p.d.f.

u = (r,g,b)

v = (r,g,b)
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Experimental results
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Experimental results
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Future Work

• Applications to classification via dimension reduction and 
FGT accelerated SVM

• Bandwidth selection

• FGT code FIGTREE (v 1.0) to be released shortly
Free for noncommercial use


