
CSCAMM FAM04: 04/27/2004

An Improved Fast Gauss Transform with
Applications

Ramani Duraiswami

Perceptual Interfaces and Reality Laboratory

Institute for Advanced Computer Studies

University of Maryland, College Park
http://www.umiacs.umd.edu/~ramani

Joint work with Changjiang Yang, Nail A. Gumerov and Larry S. Davis

CSCAMM FAM04: 04/27/2004

Fast Multipole Methods
• Originally proposed by Rokhlin and Greengard (1987) to efficiently evaluate

sums of monopoles:

• FMM accelerates matrix vector
products (sums) of the type

X source point set

Y evaluation point set

Φ some function

• Original functions Φ for which
FMM was developed were
long-ranged and singular at the
source point

• FMM relies on “separation of
variables” to achieve speed

CSCAMM FAM04: 04/27/2004

Factorization

Expansion coefficients
Basis functions

Expansion center Truncation number

•Substitute in the product

•Rearrange summation
order

•Inner sum does not
depend on evaluation
points

CSCAMM FAM04: 04/27/2004

Reduction of Complexity
Straightforward (nested loops):

Complexity: O(MN)

Factorized:

Complexity: O(pN+pM)

If p << min(M,N) then complexity reduces!

•Remark: O(N) for fixed p.

•However, error grows with N

•For fixed error have to increase p with N

•For geometrically convergent series this introduces a factor of log N

CSCAMM FAM04: 04/27/2004

Conventional FMM
• Function Φ is singular and a uniformly valid factorization is not

available

• Construct patchwork-quilt of overlapping approximations
Local and Multipole Expansions

• Partition sum into a piece that is computed directly and piece that
uses factorization.

• Tree data-structures used to reduce the cost of the piece that must
be computed directly to that computed via factorization

Translation operators convert one representation to another

• Achieve O(N) complexity for fixed p

• Remarks
Building data structures is O(N log N)

For fixed error p could depend on N and make complexity O(N log N)

CSCAMM FAM04: 04/27/2004

G(yj) =
NX
i= 1

qi e
−kyj−xik2/h2

, j = 1, . . . ,M.

Fast Gauss Transform
• FMM was applied to evaluate sums of Gaussians by

Greengard & Strain (1989, 1991)

• Direct evaluation requires O(N2) operations.
• FGT reduces cost to O(N log N) operations.

⎡⎢⎢⎢⎣
G(y1)
G(y2)
...

G(yM)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
e−kx1−y1k

2/h2 e−kx2−y1k
2/h2 · · · e−kxN−y1k

2/h2

e−kx1−y2k2/h2 e−kx2−y2k2/h2 · · · e−kxN−y2k2/h2

...
...

. ..
...

e−kx1−yMk2/h2 e−kx2−yMk2/h2 · · · e−kxN−yMk2/h2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣
q1
q2
...
qN

⎤⎥⎥⎥⎦

SourcesTargets

CSCAMM FAM04: 04/27/2004

An =
1

n!

NX
i= 1

qi

µ
xi− x∗
h

¶n

Original FGT Factorization :Hermite
Expansion

• Gaussian kernel factorized into Hermite and Taylor expansions

where Hermite function hn(x) is defined by

• Exchange order of summations

where An is defined by

e−ky−xik2/h2
=

p−1X
n= 0

1

n!

µ
xi− x∗
h

¶n
hn

µ
y − x∗
h

¶
+ ²(p) ,

hn(x) = (−1) n
dn

dxn

µ
e−x2

¶
.

G(yj) =
NX
i= 1

qi

p−1X
n= 0

1

n!

µ
xi − x∗
h

¶n
hn

µ
yj − x∗
h

¶
+ ²(p) ,

=
p−1X
n= 1

Anhn

µyj − x∗
h

¶
+ ²(p)

e−ky−xik2/h2
=

p−1X
n= 0

1

n!

µ
y − x∗
h

¶n
hn

µ
xi − x∗
h

¶
+ ²(p) ,

CSCAMM FAM04: 04/27/2004

FGT obtained by applying FMM framework

• Local and “far-field” expansion

• Translation of Hermite expansion to Taylor expansion

• Box data-structures

• Our goal to use the FGT for problems in computer vision
and pattern recognition

• Problems not restricted to 1-3 dimensions
High dimensional “feature” spaces

• Need to use FGT in high dimensions

• FGT does not scale well with dimensionality

CSCAMM FAM04: 04/27/2004

Hermite Expansion in Higher Dimensions
• The higher dimensional Hermite expansion is the

Kronecker product of d univariate Hermite expansions.

• Total number of terms is O(pd), p is the number of
truncation terms.

• The number of operations in one factorization is O(pd).

h0 h1 h2

h2h2h2h1h2h0

h1h2h1h1h1h0

h0h2h0h1h0h0

D=1 D=2 D=3 D>3

CSCAMM FAM04: 04/27/2004

Space Subdivision in FGT
• The FGT subdivides the space into uniform boxes and

assigns the source points and target points into boxes.

• For each box the FGT maintain a neighbor list.

• The number of the boxes increases exponentially with the
dimensionality.

D=1 D=2 D=3 D>3

CSCAMM FAM04: 04/27/2004

FGT in Higher Dimensions
• The higher dimensional Hermite expansion is the product

of univariate Hermite expansion along each dimension.
Total number of terms is O(pd).

• The space subdivision scheme in the original FGT is
uniform boxes. The number of boxes grows
exponentially with dimension. Most boxes are empty.

• The FGT was originally designed to solve the problems
in mathematical physics (heat equation, vortex methods,
etc), where the dimension is up to 3.

• The exponential dependence on the dimension makes the
FGT extremely inefficient in higher dimensions.

CSCAMM FAM04: 04/27/2004

Improved Fast Gauss Transform
• Reconsider data structures and expansions needed
• Comparing Gaussians with conventional FMM Φ

Gaussian is not singular – it is infinitely differentiable!
Gaussians vanish exponetially quickly in the far-field

• Modified expansions
Local: Multivariate Taylor Expansions
Far field expansion is zero!

• Modified data structures
Data structures are not needed to separate domains of validity
(expansions are valid throughout)
Rather need data structures to decide where to ignore the effect
of the Gaussian and to decide center of Gaussian

CSCAMM FAM04: 04/27/2004

Far Field Expansion is Zero
• The decay of the Gaussian kernel function is rapid.

Effect of Gaussian outside certain range can be safely ignored

• Time consuming translation operators in original FGT can
be safely removed!

0

0.2

0.4

0.6

0.8

1

1.2

-10 -8 -6 -4 -2 0 2 4 6 8 10rx/h

3.72E-446.64E-361.6E-285.24E-222.32E-161.39E-111.13E-070.0001230.0183160.3678791f(rx/h)

109876543210rx/h

CSCAMM FAM04: 04/27/2004

Multivariate Taylor Expansions
• The Taylor expansion of the Gaussian function:

• The first two terms depend on xi or yj alone.

• The Taylor expansion of the last term is:

where α=(α1, , αd) is multi-index.

• The multivariate Taylor expansion about center x*:

• where coefficients Cα are given by

e−kyj−xik2/h2
= e−kyj−x∗k2/h2

e−kxi−x∗k2/h2
e2(yj−x∗) ·(xi−x∗)/h2

,

e2(yj−x∗) ·(xi−x∗)/h2
=

X
α≥0

2|α|
α!

µ
xi− x∗
h

¶αµyj − x∗
h

¶α
.

G(yj) =
X
α≥0

Cαe
−kyj−x∗k2/h2

µ
yj − x∗
h

¶α
,

Cα =
2|α|
α!

NX
i= 1

qie
−kxi−x∗k2/h2

µ
xi− x∗
h

¶α
.

CSCAMM FAM04: 04/27/2004

Fix p = 10, vary d = 1:20 Fix d = 10, vary p = 1:20

0 2 4 6 8 10 12 14 16 18 20
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

d

N
um

be
r

of
 t

er
m

s

Hermite Expansion
Taylor Expansion

0 2 4 6 8 10 12 14 16 18 20
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

p

N
um

be
r

of
 t

er
m

s

Hermite Expansion
Taylor Expansion

Truncation order p

N
um

be
r

of
 t

er
m

s

N
um

be
r

of
 t

er
m

s
Dimension d

Modified Factorization: Taylor Expansions
• The number of terms in multivariate Taylor expansion

is , asymptotically O(d p)

• Original expansion has O(pd) terms

• New expansion results in a big reduction for large d and
moderate p

³
p+ d−1
d

´

CSCAMM FAM04: 04/27/2004

Space Subdivision Scheme
• The space subdivision scheme in the original FGT is uniform

boxes. The number of boxes grows exponentially with the
dimensionality.

• Need a data structure that
Allows ignoring the far-field

Assigns each point to a local expansion center

• The space subdivision should adaptively fit density of the points.

• The cell should be as compact as possible.

• The algorithm should be a progressive one,
Refined space subdivision obtained from previous one.

• Based on the above considerations, we develop a structure using the
k-center problem.

CSCAMM FAM04: 04/27/2004

k-center Algorithm

• The k-center problem is defined to seek the “best”
partition of a set of points into clusters (Gonzalez 1985,
Hochbaum and Shmoys 1985, Feder and Greene 1988).

• The k-center problem is NP-hard but there exists a simple
2-approximation algorithm.

Given a set of points and a predefined number k, k-center
clustering is to find a partition S = S1 ∪ S2 ∪ ∪ Sk that
minimizes max1 ≤ i ≤ k radius(Si), where radius(Si) is the radius
of the smallest disk that covers all points in Si.

Smallest circles

CSCAMM FAM04: 04/27/2004

Farthest-Point Algorithm
• The farthest-point algorithm (a.k.a. k-center algorithm) is

a 2-approximation to optimal solution (Gonzales 1985).

• The total running time is O(kn), n is the number of points.
It can be reduced to O(n log k) using a slightly more
complicated algorithm (Feder and Greene 1988).

1. Initially randomly pick a point v0 as the first center and add it to the
center set C .

2. For i = 1 to k− 1 do
• For every point v ∈ V , compute the distance from v to the current
center set C = {v0, v1 , . . . , vi−1}: di(v, C) = minc∈C kv − ck.

• From thepoints V −C find a point vi that is farthest away from the
current center set C , i.e. di(vi,C) = maxvminc∈C kv − ck.

• Addvi to the center set C .
3. Return the center set C = {v0 , v1, . . . , vk−1} as the solution to k-center
problem.

CSCAMM FAM04: 04/27/2004

A Demo of k-center Algorithm

k = 4

CSCAMM FAM04: 04/27/2004

Results of k-center Algorithm

• The results of k-center algorithm. 40,000 points are
divided into 64 clusters in 0.48 sec on a 900MHZ PIII PC.

CSCAMM FAM04: 04/27/2004

More Results of k-center Algorithm

• The 40,000 points are on the manifolds.

CSCAMM FAM04: 04/27/2004

Properties of k-center Algorithm
• Computational complexity of k-center is O(n logk).

Points are generated using uniform distribution.

(Left) Number of points varies from 1000 to 40000 for k=64

(Right) Number of clusters k varies from 10 to 500 for 40000
points.

10
1

10
2

10
3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Log k

T
im

e
(s

)

n Log k

Ti
m

e(
s)

Ti
m

e(
s)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

n

T
im

e(
s)

CSCAMM FAM04: 04/27/2004

Monomial Orders
• Let α=(α1, , αn), β=(β1, , βn), then three standard

monomial orders:
Lexicographic order, or “dictionary” order:

α ≺lex β iff the leftmost nonzero entry in α - β is negative.

Graded lexicographic order:
α ≺grlex β iff ∑1 ≤ i ≤ n αi < ∑1 ≤ i ≤ n βi or (∑1 ≤ i ≤ n αi = ∑1 ≤ i ≤ n βi and α
≺lex β).

Graded reverse lexicographic order:
α ≺grevlex β iff ∑1 ≤ i ≤ n αi < ∑1 ≤ i ≤ n βi or (∑1 ≤ i ≤ n αi = ∑1 ≤ i ≤ n βi and

the rightmost nonzero entry in α - β is positive).

• Example:
Let f(x,y,z) = xy5z2 + x2y3z3 + x3, then
w.r.t. lex: f(x,y,z) = x3 + x2y3z3 + xy5z2;
w.r.t. grlex: f(x,y,z) = x2y3z3 + xy5z2 + x3;
w.r.t. grevlex: f(x,y,z) = xy5z2 + x2y3z3 + x3.

CSCAMM FAM04: 04/27/2004

Horner’s Rule
• Horner’s rule (Horner, 1819) recursively evaluates the polynomial

ap xp + + a1 x + a0 as:

(((ap x + ap-1)x+)x + a0.

• costs p multiplications and p additions, no extra storage.
Reduces complexity from O(p2) to O(p)

• We do this for the multivariate polynomial iteratively using the
graded lexicographic order. Costs C(p+d-1,d) operations and
storage. 1

↓ a ↓ b ↓ c

a b c

↓ a ↓ b ↓ c

a2 ab ac b2 bc c2

↓ a ↓ b ↓ c

a3 a2b a2c ab2 abc ac2 b3 b2c bc2 c3

Figure 1: Efficient expansion of the multivariate polynomials. The arrows point
to the leading terms.

x=(a,b,c)
x0

x1

x2

x3

CSCAMM FAM04: 04/27/2004

An Example of Taylor Expansion
• Suppose x = (x1, x2, x3) and y = (y1, y2, y3), then

x3
3x2x3

2x2
2x3x2

3x1x3
2x1x2x

3

x1x2
2x1

2x3x1
2x2x1

3

x3
2x2x3x2

2x1 x3x1 x2x1
2

x3x2x1

1

×

y3
3y2y3

2y2
2y3y2

3y1y3
2y1y2y

3

y1y2
2y1

2y3y1
2y2y1

3

y3
2y2y3y2

2y1 y3y1 y2y1
2

y3y2y1

1

4/34434/3484444/3

242442

222

1

×

≈

Constant
19 ops
Direct: 29ops

19 ops
Direct:29ops

19 ops
Direct: 29 ops

e2x·y =
X
α≥0

2|α|
α!
xαyα

CSCAMM FAM04: 04/27/2004

An Example of Taylor Expansion (Cont’d)

x3
3x2x3

2x2
2x3x2

3x1x3
2x1x2x

3

x1x2
2x1

2x3x1
2x2x1

3

x3
2x2x3x2

2x1 x3x1 x2x1
2

x3x2x1

1

×

y3
3y2y3

2y2
2y3y2

3y1y3
2y1y2y

3

y1y2
2y1

2y3y1
2y2y1

3

y3
2y2y3y2

2y1 y3y1 y2y1
2

y3y2y1

1

4/3444/3484444/3

242442

222

1

×

≈

×

×

Constant
19 ops
Direct: 29ops

21N ops
Direct:31Nops

20 ops
Direct:30ops

G(y) =
NX
i= 1

qie
−kxi−yk2

=
NX
i= 1

qie
−kxik2

e−kyk2 X
α≥0

2|α|
α!
xαi y

α

= e−kyk2 X
α≥0

2|α|
α!
yα

NX
i= 1

qie
−kxik2xαi

G(y) =
NX
i= 1

qie
−kxi−yk2

=
NX
i= 1

qie
−kxik2

e−kyk2 X
α≥0

2|α|
α!
xαi y

α

= e−kyk2 X
α≥0

2|α|
α!
yα

NX
i= 1

qie
−kxik2xαi

NX
i= 1

qie
−(x2

1+ x2
2+ x2

3)

e−(y2
1+ y2

2 + y2
3)

CSCAMM FAM04: 04/27/2004

Improved Fast Gauss Transform

Step 1 Assign the N sources into K clusters using the farthest-point clus-
tering algorithm such that the radius is less than rx.
Step 2 Choose p sufficiently large such that the error estimate is less than

the desired precision ².
Step 3 For each cluster Sk with center ck, compute the coefficien ts:

Ckα =
2|α|

α!

X
xi∈Sk

qie
−kxi−ckk2/h2

µ
xi − ck
h

¶α

.

Step 4 Repeat for each target yj, find its neighbor clusters whose centers
lie within the range ry . Then the sum of Gaussians can be evaluated by the
expression:

G(yj) =
X

kyj−ckk<hρy

X
|α |<p

Ckαe
−kyj−ckk2/h2

µ
yj − ck
h

¶α
.

Control series truncation error

Control far field cutoff error

Collect the contributions from sources to centers

Summarize the contributions from centers to targets

CSCAMM FAM04: 04/27/2004

Error Bound of IFGT

• The total error from the series truncation and the cutoff
outside of the neighborhood of targets is bounded by

|E(y)|≤
X

|qi|
µ
2p

p!

³rx
h

´p ³ry
h

´p
+ e−(ry/h)

2

¶
.

rx

rxry

Truncation error Cutoff error

Sources

Targets

CSCAMM FAM04: 04/27/2004

Error Bound Analysis
• Increasing number of truncation terms p, reduces error

• Increasing k in the k-center algorithm, radius of source
point clusters rx will decrease, until the error bound is less
than a given precision.

• The error bound first decreases, then increases with
respect to the cutoff radius ry.

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

p

E
rr

or

Real max abs error
Estimated error bound

0.3 0.4 0.5 0.6 0.7 0.8
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

rx

E
rr

or

Real max abs error
Estimated error bound

Truncation order p Max radius of cells

Er
ro

r

Er
ro

r

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

ry

E
rr

or

Real max abs error
Estimated error bound

Cutoff radius

Er
ro

r

CSCAMM FAM04: 04/27/2004

Experimental Result

• The speedup of the fast Gauss transform in 4, 6, 8, 10
dimensions (h=1.0).

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

N

C
P

U
 ti

m
e

direct method, 4D
fast method, 4D
direct method, 6D
fast method, 6D
direct method, 8D
fast method, 8D
direct method, 10D
fast method, 10D

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

N

M
ax

 a
bs

 e
rr

or

4D
6D
8D
10D

N N

CSCAMM FAM04: 04/27/2004

Efficient Kernel Density Estimation

CSCAMM FAM04: 04/27/2004

Kernel Density Estimation (KDE)

• Kernel density estimation (a.k.a Parzen method,
Rosenblatt 1956, Parzen 1962) is an important
nonparametric technique.

• KDE is the keystone of many algorithms:
Radial basis function networks

Support vector machines

Mean shift algorithm

Regularized particle filter

• The main drawback is the quadratic computational
complexity. Very slow for large dataset.

CSCAMM FAM04: 04/27/2004

Kernel Density Estimation

• Given a set of observations {x1, , xn}, an estimate of
density function is

• Some commonly used kernel functions

• The computational requirement for large datasets is
O(N2), for N points.

f̂n(x) =
1

nhd

nX
i= 1

K

Ãkx− xik
h

!
Bandwidth

Kernel function

Dimension

4 3 2 1 0 1 2 3 4 5

Rectangular Triangular Epanechnikov Gaussian

CSCAMM FAM04: 04/27/2004

Efficient KDE and FGT

• In practice, the most widely used kernel is the Gaussian

• The density estimate using the Gaussian kernel:

• Fast Gauss transform can reduce the cost to O(N logN) in
low-dimensional spaces.

• Improved fast Gauss transform accelerates the KDE in
both lower and higher dimensions.

KN (x) = (2π)−d/2e−
1
2kxk2 .

CSCAMM FAM04: 04/27/2004

Experimental Result

• Image segmentation results of the mean-shift algorithm
with the Gaussian kernel.

Size: 432X294
Time: 7.984 s

Direct evaluation:
more than 2 hours

Size: 481X321
Time: 12.359 s

Direct evaluation:
more than 2 hours

CSCAMM FAM04: 04/27/2004

Object Tracking
• Goal of object tracking: find the moving objects between

consecutive frames.

• A model image or template is given for tracking.

• Usually a feature space is used, such as pixel intensity,
colors, edges, etc.

• Usually a similarity measure is used to measure the
difference between the model image and current image.

• Temporal correlation assumption: the change between two
consecutive frames is small.

Model image
Target image

Similarity function

CSCAMM FAM04: 04/27/2004

Image Representations
• Images are mapped into feature spaces.

• Feature spaces are described by the probabilistic density
functions (p.d.f.).

• The p.d.f. is estimated using kernel density estimation:

• Accelerated using FGT. Details in Yang et al 2004.

Target Image Feature Space
p.d.f.

Model Image Feature Space p.d.f.

u = (r,g,b)

v = (r,g,b)

CSCAMM FAM04: 04/27/2004

Experimental results

CSCAMM FAM04: 04/27/2004

Experimental results

CSCAMM FAM04: 04/27/2004

Future Work

• Applications to classification via dimension reduction and
FGT accelerated SVM

• Bandwidth selection

• FGT code FIGTREE (v 1.0) to be released shortly
Free for noncommercial use

