An Improved Fast Gauss Transform with Applications

Ramani Duraiswami
Perceptual Interfaces and Reality Laboratory
Institute for Advanced Computer Studies
University of Maryland, College Park
http://www.umiacs.umd.edu/~ramani

Joint work with Changjiang Yang, Nail A. Gumerov and Larry S. Davis

CSCAMM FAM04: 04/27/2004

Fast Multipole Methods

- Originally proposed by Rokhlin and Greengard (1987) to efficiently evaluate sums of monopoles:
- FMM accelerates matrix vector
$\mathbf{v}=\boldsymbol{\Phi} \mathbf{u}$, products (sums) of the type
$\square X$ source point set
\square Y evaluation point set
- Φ some function
- Original functions Φ for which

$$
\boldsymbol{\Phi}=\left(\begin{array}{cccc}
\Phi\left(\mathbf{y}_{1}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{1}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{1}, \mathbf{x}_{N}\right) \\
\Phi\left(\mathbf{y}_{2}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{2}, \mathbf{x}_{N}\right) \\
\ldots & \ldots & \ldots & \ldots \\
\Phi\left(\mathbf{y}_{M U}, \mathbf{x}_{1}\right) & \Phi\left(\mathbf{y}_{M}, \mathbf{x}_{2}\right) & \ldots & \Phi\left(\mathbf{y}_{M}, \mathbf{x}_{N}\right)
\end{array}\right) .
$$

FMM was developed were long-ranged and singular at the source point

$$
\begin{array}{lll}
\mathrm{X}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\}, & \mathbf{x}_{i} \in \mathbf{R}^{d}, & i=1, \ldots, N, \\
Y=\left\{\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{M}\right\}, & \mathbf{y}_{j} \in \mathrm{R}^{d}, & j=1, \ldots, M .
\end{array}
$$

- FMM relies on "separation of variables" to achieve speed

$$
v_{j}=\sum_{i=1}^{N} u_{i} \Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right), \quad j=1, \ldots, M .
$$

Factorization

$$
\mathrm{I} \cdot\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right)=\sum_{m=0}^{\infty} a_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{*}\right) f_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right)=\sum_{m=0}^{p-1} a_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{*}\right) f_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right)+\operatorname{Error}\left(p ; \mathbf{x}_{i}, \mathbf{y}_{j}\right)
$$

Basis functions

Expansion coefficients

- Substitute in the product

$$
v_{j}=\sum_{i=1}^{N} \Phi\left(\mathbf{y}_{j} \mathbf{x}_{i}\right) u_{i}
$$

- Rearrange summation order

$$
=\sum_{i=1}^{N}\left[\sum_{m=0}^{p-1} a_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{*}\right) f_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right)+\operatorname{Error}\left(p, \mathbf{x}_{i}, \mathbf{y}_{\mathbf{j}}\right)\right] u_{i}
$$

-Inner sum does not depend on evaluation points

$$
=\sum_{m=0}^{p-1} f_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right) \sum_{i=1}^{N} a_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{*}\right) u_{i}+\sum_{i=1}^{N} \operatorname{Error}\left(p ; \mathbf{x}_{i}, \mathbf{y}_{j}\right) u_{i}
$$

$$
=\sum_{m=0}^{p-1} c_{m} f_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right)+\operatorname{Error}(N, p),
$$

CSCAMM FAM04: 04/27/2004

Reduction of Complexity

Straightforward (nested loops):

$$
\text { for } j=1, \ldots, M
$$

$$
v_{j}=0
$$

for $i=1, \ldots, N$

$$
v_{j}=v_{j}+\Phi\left(\mathbf{y}_{j}, \mathbf{x}_{i}\right) u_{i}
$$

end;
end;
Complexity: $O(M N)$

If $p \ll \min (M, N)$ then complexity reduces!

-Remark: $O(N)$ for fixed p.
-However, error grows with N

Factorized:

```
for \(m=0, \ldots, p-1\)
    \(c_{m}=0\);
    for \(i=1, \ldots, N\)
        \(c_{m}=c_{m}+a_{m}\left(\mathbf{x}_{i}-\mathbf{x}_{*}\right) u_{i}\),
    end;
end;
```

for $j=1, \ldots, M$
$v_{j}=0 ;$
for $m=0, \ldots, p-1$
$v_{j}=v_{j}+c_{m} f_{m}\left(\mathbf{y}_{j}-\mathbf{x}_{*}\right) ;$
end;
end;
-For fixed error have to increase p with N
-For geometrically convergent series this introduces a factor of $\log N$ CSCAMM FAM04: 04/27/2004

Conventional FMM

- Function Φ is singular and a uniformly valid factorization is not available
- Construct patchwork-quilt of overlapping approximations \square Local and Multipole Expansions
- Partition sum into a piece that is computed directly and piece that uses factorization.
- Tree data-structures used to reduce the cost of the piece that must be computed directly to that computed via factorization
\square Translation operators convert one representation to another
- Achieve $O(N)$ complexity for fixed p
- Remarks
\square Building data structures is $O(N \log N)$
\square For fixed error p could depend on N and make complexity $O(N \log N)$

CSCAMM FAM04: 04/27/2004

Fast Gauss Transform

- FMM was applied to evaluate sums of Gaussians by Greengard \& Strain $(1989,1991)$

$$
\begin{gathered}
G\left(y_{j}\right)=\sum_{i=1}^{N} q_{i} e^{-\left\|y_{j}-x_{i}\right\|^{2} / h^{2}}, \quad j=1, \ldots, M . \\
\text { Targets } \\
{\left[\begin{array}{c}
G\left(y_{1}\right) \\
G\left(y_{2}\right) \\
\vdots \\
G\left(y_{M}\right)
\end{array}\right]=\left[\begin{array}{cccc}
e^{-\left\|x_{1}-y_{1}\right\|^{2} / h^{2}} & e^{-\left\|x_{2}-y_{1}\right\|^{2} / h^{2}} & \cdots & e^{-\left\|x_{N}-y_{1}\right\|^{2} / h^{2}} \\
e^{-\left\|x_{1}-y_{2}\right\|^{2} / h^{2}} & e^{-\left\|x_{2}-y_{2}\right\|^{2} / h^{2}} & \cdots & e^{-\left\|x_{N}-y_{2}\right\|^{2} / h^{2}} \\
\vdots & \vdots & \ddots & \vdots \\
e^{-\left\|x_{1}-y_{M}\right\|^{2} / h^{2}} & e^{-\left\|x_{2}-y_{M}\right\|^{2} / h^{2}} & \cdots & e^{-\left\|x_{N}-y_{M}\right\|^{2} / h^{2}}
\end{array}\right]\left[\begin{array}{c}
q_{1} \\
q_{2} \\
\vdots \\
q_{N}
\end{array}\right]}
\end{gathered}
$$

- Direct evaluation requires $\mathrm{O}\left(\mathrm{N}^{2}\right)$ operations.
- FGT reduces cost to $O(N \log N)$ operations.

Original FGT Factorization :Hermite Expansion

- Gaussian kernel factorized into Hermite and Taylor expansions

$$
\begin{array}{r}
e^{-\left\|y-x_{i}\right\|^{2} / h^{2}}=\sum_{n=0}^{p-1} \frac{1}{n!}\left(\frac{x_{i}-x_{*}}{h}\right)^{n} h_{n}\left(\frac{y-x_{*}}{h}\right)+\epsilon(p), \\
e^{-\left\|y-x_{i}\right\|^{2} / h^{2}}=\sum_{n=0}^{p-1} \frac{1}{n!}\left(\frac{y-x_{*}}{h}\right)^{n} h_{n}\left(\frac{x_{i}-x_{*}}{h}\right)+\epsilon(p),
\end{array}
$$

\square where Hermite function $h_{n}(x)$ is defined by

$$
h_{n}(x)=(-1)^{n} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2}}\right) .
$$

- Exchange order of summations

$$
\begin{aligned}
& \qquad \begin{aligned}
& G\left(y_{j}\right)=\sum_{i=1}^{N} q_{i} \sum_{n=0}^{p-1} \frac{1}{n!}\left(\frac{x_{i}-x_{*}}{h}\right)^{n} h_{n}\left(\frac{y_{j}-x_{*}}{h}\right)+\epsilon(p) \\
&=\sum_{n=1}^{p-1} A_{n} h_{n}\left(\frac{y_{j}-x_{*}}{h}\right)+\epsilon(p)
\end{aligned} \\
& \text { where } A_{n} \text { is defined by } \quad A_{n}=\frac{1}{n!} \sum_{i=1}^{N} q_{i}\left(\frac{x_{i}-x_{*}}{h}\right)^{n}
\end{aligned}
$$

CSCAMM FAM04: 04/27/2004

FGT obtained by applying FMM framework

- Local and "far-field" expansion
- Translation of Hermite expansion to Taylor expansion
- Box data-structures
- Our goal to use the FGT for problems in computer vision and pattern recognition
- Problems not restricted to 1-3 dimensions
-High dimensional "feature" spaces
- Need to use FGT in high dimensions
- FGT does not scale well with dimensionality

Hermite Expansion in Higher Dimensions

- The higher dimensional Hermite expansion is the Kronecker product of d univariate Hermite expansions.
- Total number of terms is $O\left(p^{d}\right), p$ is the number of truncation terms.
- The number of operations in one factorization is $O\left(p^{d}\right)$.

$\mathrm{h}_{0} \mathrm{~h}_{0}$	$\mathrm{~h}_{0} \mathrm{~h}_{1}$	$\mathrm{~h}_{0} \mathrm{~h}_{2}$
$\mathrm{~h}_{1} \mathrm{~h}_{0}$	$\mathrm{~h}_{1} \mathrm{~h}_{1}$	$\mathrm{~h}_{1} \mathrm{~h}_{2}$
$\mathrm{~h}_{2} \mathrm{~h}_{0}$	$\mathrm{~h}_{2} \mathrm{~h}_{1}$	$\mathrm{~h}_{2} \mathrm{~h}_{2}$

$D=2$

$D=3$

D>3

Space Subdivision in FGT

- The FGT subdivides the space into uniform boxes and assigns the source points and target points into boxes.
- For each box the FGT maintain a neighbor list.

- The number of the boxes increases exnonentially with the dimensionality.

$D=1$

$\mathrm{D}=2$

$D=3$

FGT in Higher Dimensions

- The higher dimensional Hermite expansion is the product of univariate Hermite expansion along each dimension. Total number of terms is $O\left(p^{d}\right)$.
- The space subdivision scheme in the original FGT is uniform boxes. The number of boxes grows exponentially with dimension. Most boxes are empty.
- The FGT was originally designed to solve the problems in mathematical physics (heat equation, vortex methods, etc), where the dimension is up to 3 .
- The exponential dependence on the dimension makes the FGT extremely inefficient in higher dimensions.

CSCAMM FAM04: 04/27/2004

Improved Fast Gauss Transform

- Reconsider data structures and expansions needed
- Comparing Gaussians with conventional FMM Φ
\square Gaussian is not singular - it is infinitely differentiable!
\square Gaussians vanish exponetially quickly in the far-field
- Modified expansions
\square Local: Multivariate Taylor Expansions
\square Far field expansion is zero!
- Modified data structures
\square Data structures are not needed to separate domains of validity (expansions are valid throughout)
\square Rather need data structures to decide where to ignore the effect of the Gaussian and to decide center of Gaussian

Far Field Expansion is Zero

- The decay of the Gaussian kernel function is rapid.
\square Effect of Gaussian outside certain range can be safely ignored
- Time consuming translation operators in original FGT can be safely removed!

CSCAMM FAM04: 04/27/2004

Multivariate Taylor Expansions

- The Taylor expansion of the Gaussian function:

$$
e^{-\left\|y_{j}-x_{i}\right\|^{2} / h^{2}}=e^{-\left\|y_{j}-x_{*}\right\|^{2} / h^{2}} e^{-\left\|x_{i}-x_{*}\right\|^{2} / h^{2}} e^{2\left(y_{j}-x_{*}\right) \cdot\left(x_{i}-x_{*}\right) / h^{2}},
$$

- The first two terms depend on x_{i} or y_{j} alone.
- The Taylor expansion of the last term is:

$$
e^{2\left(y_{j}-x_{*}\right) \cdot\left(x_{i}-x_{*}\right) / h^{2}}=\sum_{\alpha \geq 0} \frac{2^{|\alpha|}}{\alpha!}\left(\frac{x_{i}-x_{*}}{h}\right)^{\alpha}\left(\frac{y_{j}-x_{*}}{h}\right)^{\alpha} .
$$

where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{\mathrm{d}}\right)$ is multi-index.

- The multivariate Taylor expansion about center X_{*} :

$$
G\left(y_{j}\right)=\sum_{\alpha \geq 0} C_{\alpha} e^{-\left\|y_{j}-x *\right\|^{2} / h^{2}\left(\frac{y_{j}-x_{*}}{h}\right)^{\alpha}, ~}
$$

- where coefficients C_{α} are given by

$$
C_{\alpha}=\frac{2^{|\alpha|}}{\alpha!} \sum_{i=1}^{N} q_{i} e^{-\left\|x_{i}-x_{*}\right\|^{2} / h^{2}}\left(\frac{x_{i}-x_{*}}{h}\right)^{\alpha}
$$

Modified Factorization: Taylor Expansions

- The number of terms in multivariate Taylor expansion is $\left({ }^{p+d-1}{ }_{d}^{d-1}\right)$ asymptotically $O\left(d^{p}\right)$
- Original expansion has $O\left(p^{d}\right)$ terms
- New expansion results in a big reduction for large d and moderate p

Fix $p=10$, vary $d=1: 20$

Fix $d=10$, vary $p=1: 20$

CSCAMM FAM04: 04/27/2004

Space Subdivision Scheme

- The space subdivision scheme in the original FGT is uniform boxes. The number of boxes grows exponentially with the dimensionality.
- Need a data structure that
\square Allows ignoring the far-field
\square Assigns each point to a local expansion center
- The space subdivision should adaptively fit density of the points.
- The cell should be as compact as possible.
- The algorithm should be a progressive one,
\square Refined space subdivision obtained from previous one.
- Based on the above considerations, we develop a structure using the k-center problem.

k-center Algorithm

- The k-center problem is defined to seek the "best" partition of a set of points into clusters (Gonzalez 1985, Hochbaum and Shmoys 1985, Feder and Greene 1988).

Given a set of points and a predefined number k_{1}, k-center clustering is to find a partition $S=S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ that minimizes $\max _{1 \leq \mathrm{i} \leq \mathrm{k}} \operatorname{radius}\left(\mathrm{S}_{\mathrm{i}}\right)$, where $\operatorname{radius}\left(\mathrm{S}_{\mathrm{i}}\right)$ is the radius of the smallest disk that covers all points in S_{i}.

- The k-center problem is NP-hard but there exists a simple 2-approximation algorithm.

CSCAMM FAM04: 04/27/2004\&
 Smallest circles

Farthest-Point Algorithm

- The farthest-point algorithm (a.k.a. k-center algorithm) is a 2-approximation to optimal solution (Gonzales 1985).
- The total running time is $O(k n)$, n is the number of points. It can be reduced to $O(n \log k)$ using a slightly more complicated algorithm (Feder and Greene 1988).

1. Initially randomly pick a point v_{0} as the first center and add it to the center set C.
2. For $i=1$ to $k-1$ do

- For every point $v \in V$, compute the distance from v to the current center set $C=\left\{v_{0}, v_{1}, \ldots, v_{i-1}\right\}: d_{i}(v, C)=\min _{c \in C}\|v-c\|$.
- From the points $V-C$ find a point v_{i} that is farthest away from the current center set C, i.e. $d_{i}\left(v_{i}, C\right)=\max _{v} \min _{c \in C}\|v-c\|$.
- Add v_{i} to the center set C.

3. Return the center set $C=\left\{v_{0}, v_{1}, \ldots, v_{k-1}\right\}$ as the solution to k-center problem.

A Demo of k-center Algorithm

$$
k=4
$$

Results of k-center Algorithm

- The results of k-center algorithm. 40,000 points are divided into 64 clusters in 0.48 sec on a 900 MHZ PIII PC.

More Results of k-center Algorithm

- The 40,000 points are on the manifolds.

Properties of k-center Algorithm

- Computational complexity of k-center is $O(n \log k)$.
\square Points are generated using uniform distribution.
\square (Left) Number of points varies from 1000 to 40000 for $k=64$
\square (Right) Number of clusters k varies from 10 to 500 for 40000 points.

n

Monomial Orders

- Let $\alpha=\left(\alpha_{1}, \cdots, \alpha_{\mathrm{n}}\right), \beta=\left(\beta_{1}, \cdots, \beta_{\mathrm{n}}\right)$, then three standard monomial orders:
DLexicographic order, or "dictionary" order:
$>\alpha \prec_{\text {lex }} \beta$ iff the leftmost nonzero entry in $\alpha-\beta$ is negative.
\square Graded lexicographic order:
$\stackrel{>}{\left.\prec_{\text {lex }} \beta\right)} \prec_{\text {grlex }} \beta$ iff $\sum_{1 \leq i \leq n} \alpha_{i}<\sum_{1 \leq i \leq n} \beta_{i}$ or $\left(\sum_{1 \leq i \leq n} \alpha_{i}=\sum_{1 \leq i \leq n} \beta_{i}\right.$ and α
\square Graded reverse lexicographic order:
$>\alpha \prec_{\text {grevex }} \beta$ iff $\sum_{1 \leq i \leq n} \alpha_{i}<\sum_{1 \leq i \leq n} \beta_{i}$ or $\left(\sum_{1 \leq i \leq n} \alpha_{i}=\sum_{1 \leq i \leq n} \beta_{i}\right.$ and the rightmost nonzero entry in $\alpha-\beta$ is positive).
- Example:
\square Let $f(x, y, z)=x y^{5} z^{2}+x^{2} y^{3} z^{3}+x^{3}$, then
\square w.r.t. lex: $\quad f(x, y, z)=x^{3}+x^{2} y^{3} z^{3}+x y^{5} z^{2}$;
\square w.r.t. grlex: $\quad f(x, y, z)=x^{2} y^{3} z^{3}+x y^{5} z^{2}+x^{3}$;
\square w.r.t. grevlex: $\quad f(x, y, z)=x y^{5} z^{2}+x^{2} y^{3} z^{3}+x^{3}$.
CSCAMM FAM04: 04/27/2004

Horner's Rule

- Horner’s rule (Horner, 1819) recursively evaluates the polynomial $a_{p} \chi^{p}+\cdots+a_{1} x+a_{0}$ as:

$$
\left(\left(\cdots\left(a_{p} x+a_{p-1}\right) x+\cdots\right) x+a_{0} .\right.
$$

- costs p multiplications and p additions, no extra storage.

Reduces complexity from $O\left(p^{2}\right)$ to $O(p)$

- We do this for the multivariate polynomial iteratively using the graded lexicographic order. Costs $C(p+d-1, d)$ operations and storage.

Figure 1: Efficient expansion of the multivariate polynomials. The arrows point to the leading terms.

An Example of Taylor Expansion

- Suppose $x=\left(x_{1}, x_{2}, x_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$, then

CSCAMM FAM04: 04/27/2004

An Example of Taylor Expansion (Cont’d)

$$
G(y)=\sum_{i=1}^{N} q_{i} e^{-\left\|x_{i}-y\right\|^{2}}=\sum_{i=1}^{N} q_{i} e^{-\left\|x_{i}\right\|^{2}} e^{-\|y\|^{2}} \sum_{\alpha \geq 0} \frac{2^{|\alpha|}}{\alpha!} x_{i}^{\alpha} y^{\alpha}
$$

Improved Fast Gauss Transform

Step 1 Assign the N sources into K clusters usíng the farthest-point clustering algorithm such that the radius is less than r_{x}.

Step 2 Choose p sufficiently large such that the error estimate is less than the desired precision ϵ.

Step 3 For each cluster S_{k} with center c_{k}, compute the coefficien ts:

$$
C_{\alpha}^{k}=\frac{2^{|\alpha|}}{\alpha!} \sum_{x_{i} \in S_{k}} q_{i} e^{-\left\|x_{i}-c_{k}\right\|^{2} / h^{2}}\left(\frac{x_{i}-c_{k}}{h}\right)^{\alpha}
$$

${ }^{\star}$ Collect the contributions from sources to centers
Step 4 Repeat for each target y_{j}, find its neighbor clusters whose centers lie within the range r_{y}. Then the sum of Gaussians can be evaluated by the expression:

$$
\begin{aligned}
G\left(y_{j}\right)= & \sum_{\left\|y_{j}-c_{k}\right\|<h \rho_{y}} \sum_{|\alpha|<p} C_{\alpha}^{k} e^{-\left\|y_{j}-c_{k}\right\|^{2} / h^{2}}\left(\frac{y_{j}-c_{k}}{h}\right)^{\alpha} . \\
& \text { Summarize the contributions from centers to targets }
\end{aligned}
$$

CSCAMM FAM04: 04/27/2004

Error Bound of IFGT

- The total error from the series truncation and the cutoff outside of the neighborhood of targets is bounded by

$$
|E(y)| \leq \sum\left|q_{i}\right|\left(\frac{2^{p}}{p!}\left(\frac{r_{x}}{h}\right)^{p}\left(\frac{r_{y}}{h}\right)^{p}+e^{-\left(r_{y} / h\right)^{2}}\right) .
$$

Truncation error Cutoff error

Error Bound Analysis

- Increasing number of truncation terms p, reduces error
- Increasing k in the k-center algorithm, radius of source point clusters r_{x} will decrease, until the error bound is less than a given precision.
- The error bound first decreases, then increases with respect to the cutoff radius r_{y}.

Cutoff radius

Experimental Result

- The speedup of the fast Gauss transform in $4,6,8,10$ dimensions ($\mathrm{h}=1.0$).

N

N

Efficient Kernel Density Estimation

Kernel Density Estimation (KDE)

- Kernel density estimation (a.k.a Parzen method, Rosenblatt 1956, Parzen 1962) is an important nonparametric technique.
- KDE is the keystone of many algorithms:
\square Radial basis function networks
\square Support vector machines
\square Mean shift algorithm
\square Regularized particle filter
- The main drawback is the quadratic computational complexity. Very slow for large dataset.

Kernel Density Estimation

- Given a set of observations $\left\{\mathrm{x}_{1}, \cdots, \mathrm{x}_{\mathrm{n}}\right\}$, an estimate of density function is
Kernel function

$$
\hat{f}_{n}(\mathrm{x})=\frac{1}{n h^{d}} \sum_{i=1}^{n} k\left(\frac{\left\|\mathrm{x}-\mathrm{x}_{i}\right\|}{h_{\mathrm{i}}}\right)
$$

Bandwidth

- Some commonly used kernel functions

- Rectanaular Triangular

Epanechnikov
Gaussian
 $O\left(\mathrm{~N}^{2}\right)$, for N points.

CSCAMM FAM04: 04/27/2004

Efficient KDE and FGT

- In practice, the most widely used kernel is the Gaussian

$$
K_{N}(\mathbf{x})=(2 \pi)^{-d / 2} e^{-\frac{1}{2}\|\mathbf{x}\|^{2}}
$$

- The density estimate using the Gaussian kernel:

$$
\hat{p}_{n}(\mathbf{x})=c_{N} \sum_{i=1}^{N} e^{-\left\|\mathbf{x}-\mathbf{x}_{i}\right\|^{2} / h^{2}}
$$

- Fast Gauss transform can reduce the cost to $O(\mathrm{~N} \log \mathrm{~N})$ in low-dimensional spaces.
- Improved fast Gauss transform accelerates the KDE in both lower and higher dimensions.

Experimental Result

- Image segmentation results of the mean-shift algorithm with the Gaussian kernel.

Size: 432X294
Time: 7.984 s
Direct evaluation: more than 2 hours

Size: 481X321
Time: 12.359 s
Direct evaluation: more than 2 hours

CSCAMM FAM04: 04/27/2004

Object Tracking

- Goal of object tracking: find the moving objects between consecutive frames.
- A model image or template is given for tracking.
- Usually a feature space is used, such as pixel intensity, colors, edges, etc.
- Usually a similarity measure is used to measure the difference between the model image and current image.
- Temporal correlation assumption: the change between two consecutive frames is small.

Target image

Image Representations

- Images are mapped into feature spaces.
- Feature spaces are described by the probabilistic density functions (p.d.f.).
- The p.d.f. is estimated using kernel density estimation:

- Accelerated using FGT. Details in Yang et al 2004.

Experimental results

Experimental results

Future Work

- Applications to classification via dimension reduction and FGT accelerated SVM
- Bandwidth selection
- FGT code FIGTREE (v 1.0) to be released shortly
\square Free for noncommercial use

