New Lightweight N-body Algorithms

Alexander Gray School of Computer Science Carnegie Mellon University

N-body problems

 $K(x, x_i) = \frac{mm_i}{\|x - x_i\|^a}$

Coulombic

(high accuracy required)

N-body problems

Coulombic

$$K(x, x_i) = \frac{mm_i}{\|x - x_i\|^a}$$

(high accuracy required)

 Nonparametric statistics

$$K(x, x_i) = e^{-\|x - x_i\|^2 / 2\sigma^2}$$

 $t = \|x - x_i\|^2 / \sigma^2 \qquad K(x, x_i) = \begin{array}{c} 1 - t^{2a} & 0 \le t < 1 \\ \text{(only moderate accuracy required, often high-D)} & 0 & t \ge 1 \end{array}$

N-body problems

Coulombic

 $K(x, x_i) = \frac{mm_i}{\|x - x_i\|^a}$

(high accuracy required)

 $t = ||x - x_i||^2 / \sigma^2$

 Nonparametric statistics

$$K(x, x_i) = e^{-\|x - x_i\|^2 / 2\sigma^2}$$

t > 2

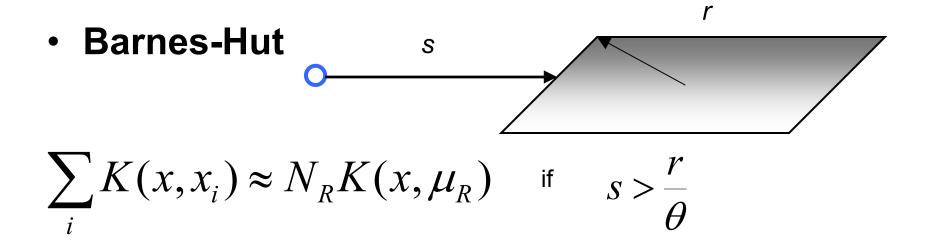
 $K(x, x_i) = \frac{1 - t^{2a} \ 0 \le t < 1}{0} \quad t \ge 1$ (only moderate accuracy required, often high-D)

 SPH (smoothed) $4 - 6t^2 + 3t^3$ $0 \le t < 1$ particle $K(x, x_i) = (2-t)^3 \quad 1 \le t < 2$ hydrodynamics)

(only moderate accuracy required) ()

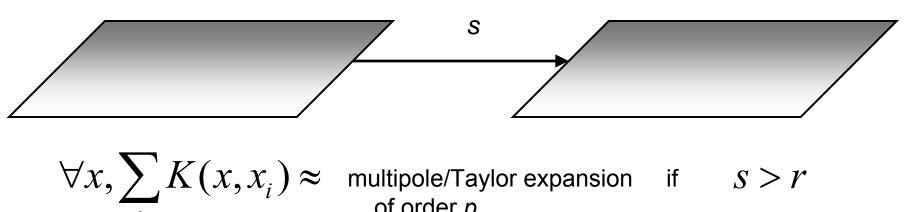
Also: different for every point, non-isotropic, edge-dependent, ...

N-body methods: Approximation



N-body methods: Approximation

- Barnes-Hut S
- $\sum_{i} K(x, x_{i}) \approx N_{R} K(x, \mu_{R}) \quad \text{if} \quad s > \frac{r}{\theta}$ **FMM**



multipole/Taylor expansion if S > rof order p

N-body methods: Runtime Barnes-Hut $\approx O(N \log N)$

non-rigorous, \thickapprox uniform distribution

• FMM $\approx O(N)$

non-rigorous, \thickapprox uniform distribution

N-body methods: Runtime Barnes-Hut $\approx O(N \log N)$

non-rigorous, pprox uniform distribution

• FMM $\approx O(N)$

lacksquare

non-rigorous, pprox uniform distribution

[Callahan-Kosaraju 95]: O(N) is impossible for log-depth tree

Expansions

- <u>Constants matter!</u> p^D factor is slowdown
- Large dimension infeasible
- Adds much complexity (software, human time)
- Non-trivial to do new kernels (assuming they're even analytic), heterogeneous kernels

Expansions

- Constants matter! p^D factor is slowdown
- Large dimension infeasible
- Adds much complexity (software, human time)
- Non-trivial to do new kernels (assuming they're even analytic), heterogeneous kernels
- BUT: Needed to achieve O(N) Needed to achieve high accuracy Needed to have hard error bounds

Expansions

- Constants matter! p^D factor is slowdown
- Large dimension infeasible
- Adds much complexity (software, human time)
- Non-trivial to do new kernels (assuming they're even analytic), heterogeneous kernels
- BUT: Needed to achieve O(N) (?) Needed to achieve high accuracy (?) Needed to have hard error bounds (?)

N-body methods: Adaptivity

Barnes-Hut

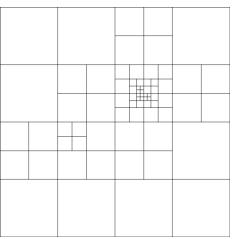
recursive

 \rightarrow can use any kind of tree

• FMM

hand-organized control flow
→ requires grid structure

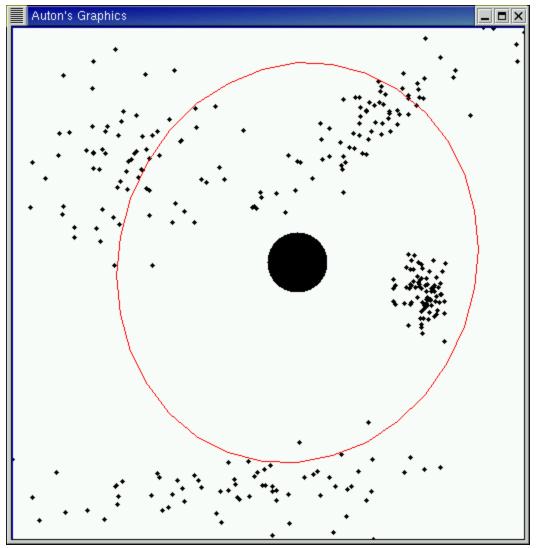
quad-tree/oct-tree *kd*-tree ball-tree/metric tree not very adaptive adaptive very adaptive

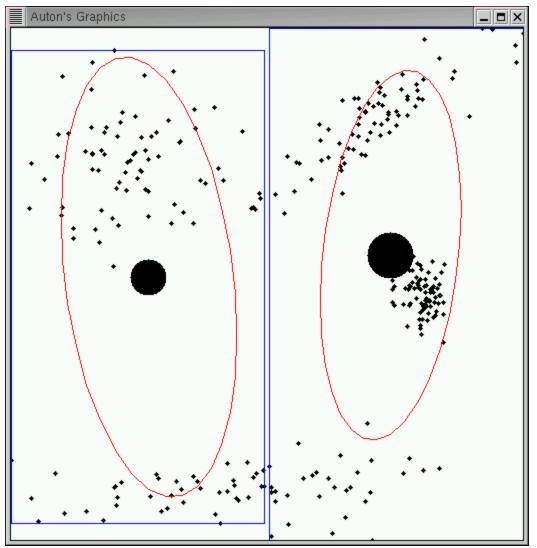


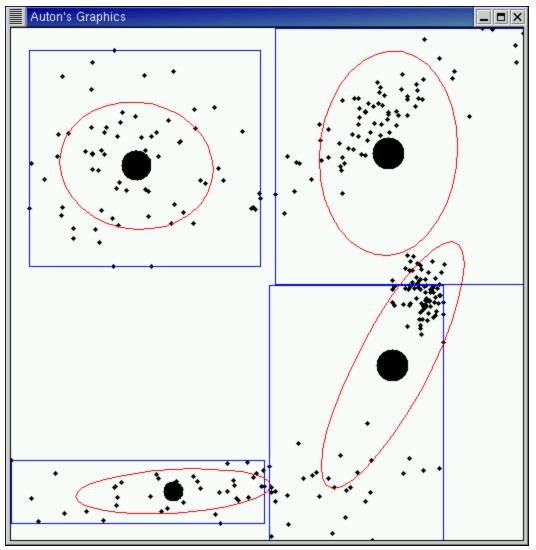
most widely-used spacepartitioning tree

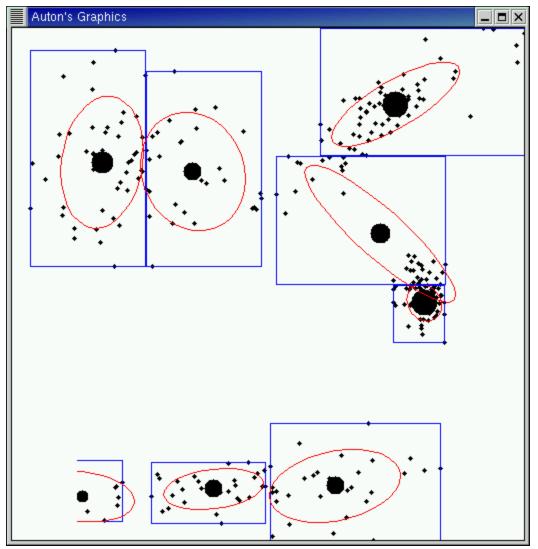
[Friedman, Bentley & Finkel 1977]

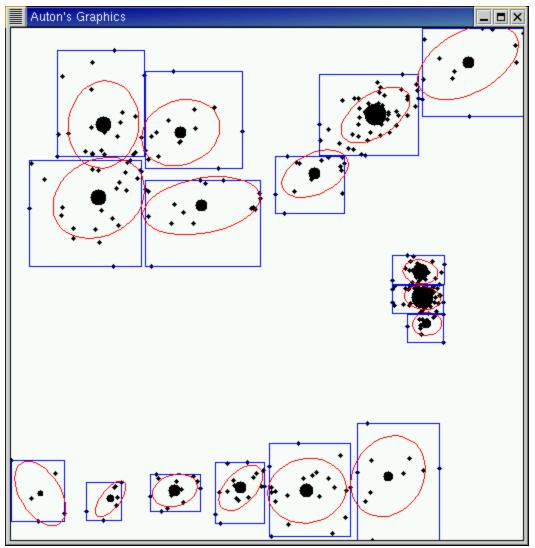
- Univariate axis-aligned splits
- Split on widest dimension
- O(N log N) to build, O(N) space

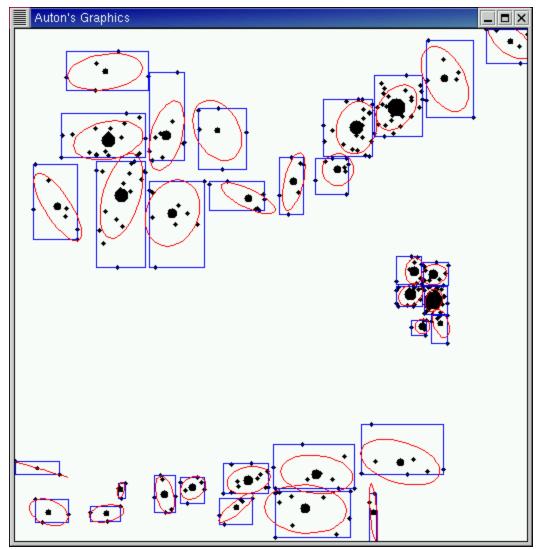


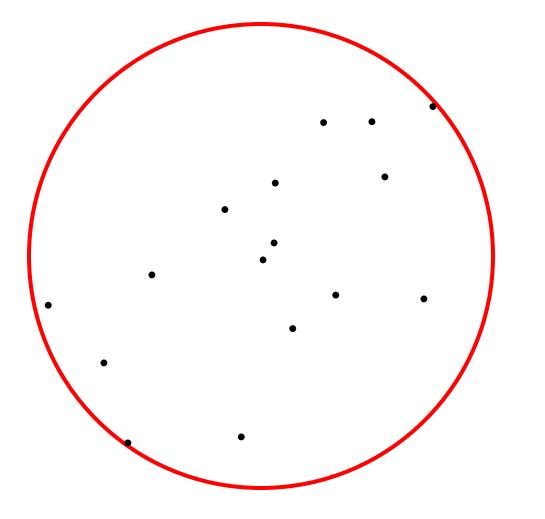






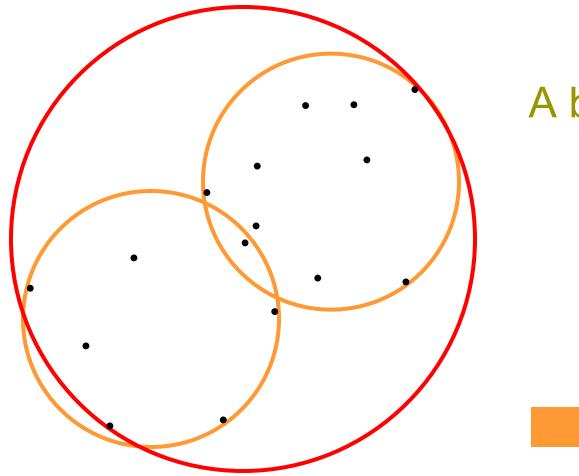




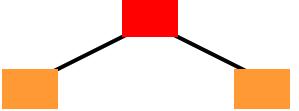


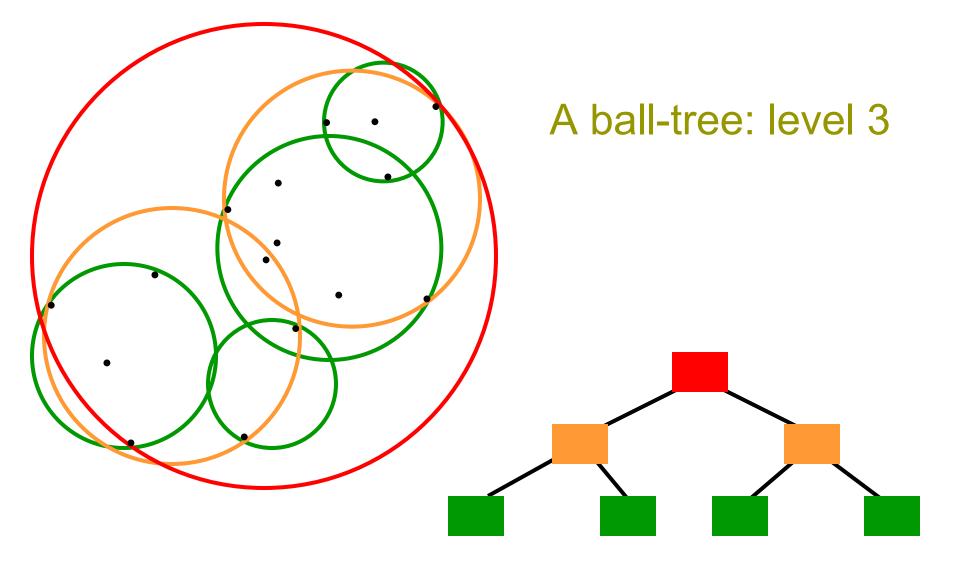
A ball-tree: level 1

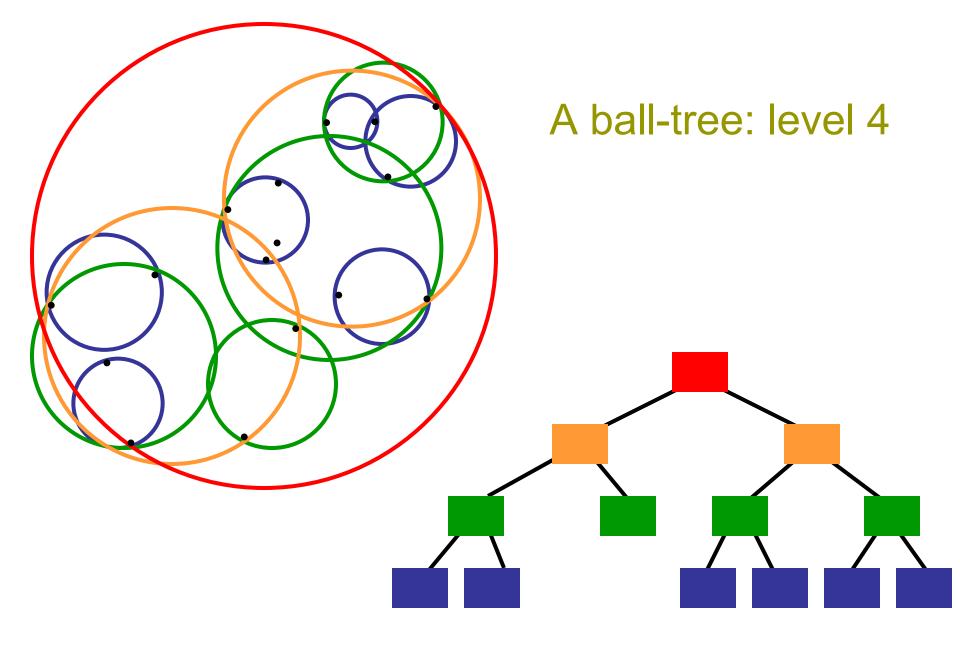
[Uhlmann 1991], [Omohundro 1991]

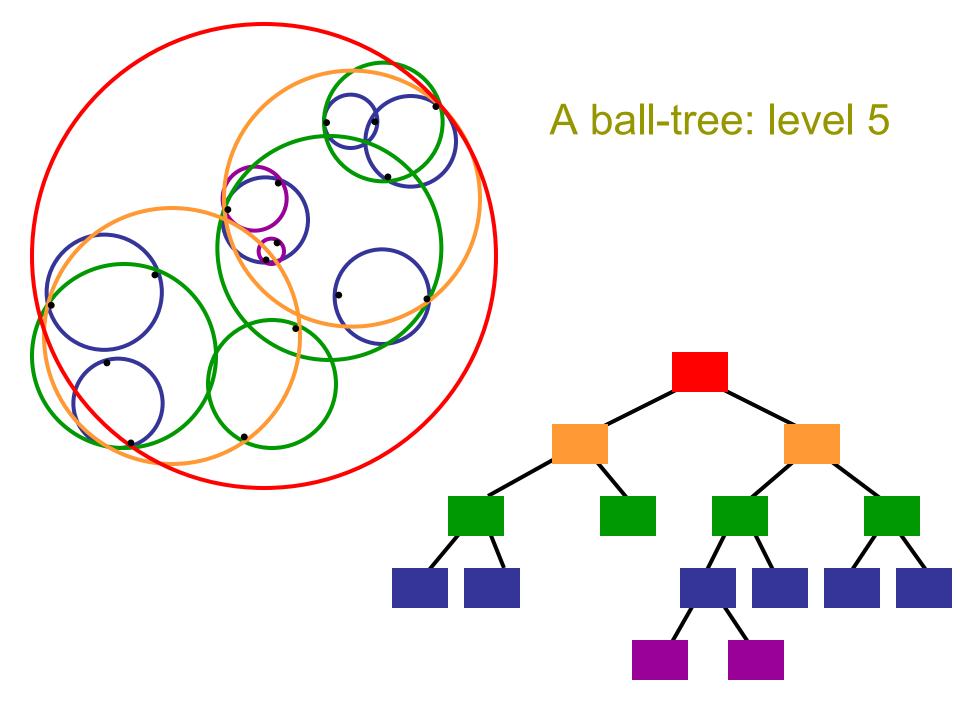


A ball-tree: level 2









N-body methods: Comparison		
runtime	Barnes-Hut O(<i>N</i> log <i>N</i>)	FMM O(N)
expansions	optional	required
simple,recursive?	yes	no
adaptive trees?	yes	no
error bounds?	no	yes

Questions

- What's the magic that allows O(N)? Is it really because of the expansions?
- Can we obtain an method that's:
 - 1. O(N)
 - 2. lightweight: works with or without expansions simple, recursive

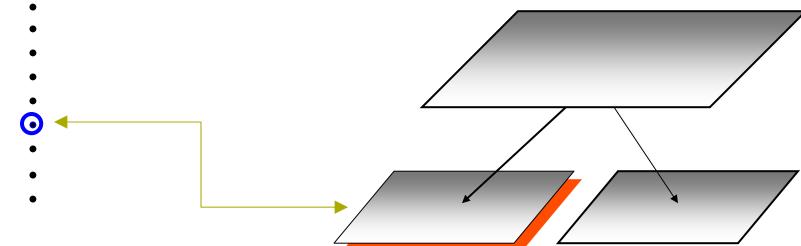
New algorithm

• Use an adaptive tree (*kd*-tree or ball-tree)

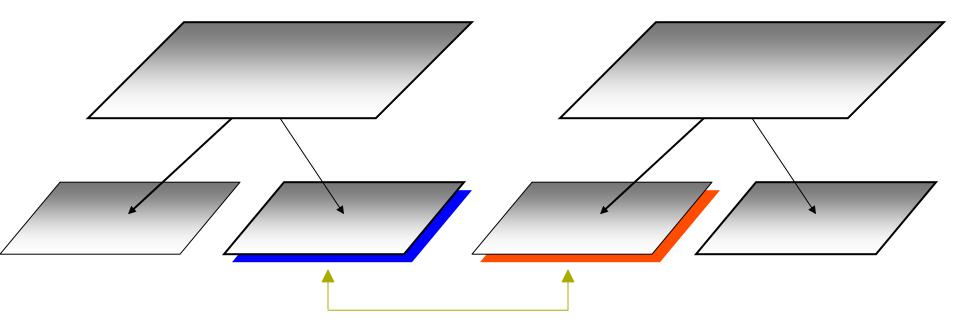
Dual-tree recursion

• Finite-difference approximation

Single-tree:



Dual-tree (symmetric):



Simple recursive algorithm

```
SingleTree(q,R)
 if approximate(q,R), return.
 if leaf(R), SingleTreeBase(q,R).
 else,
   SingleTree(q,R.left).
   SingleTree(q,R.right).
```

Simple recursive algorithm

```
DualTree(Q,R)
```

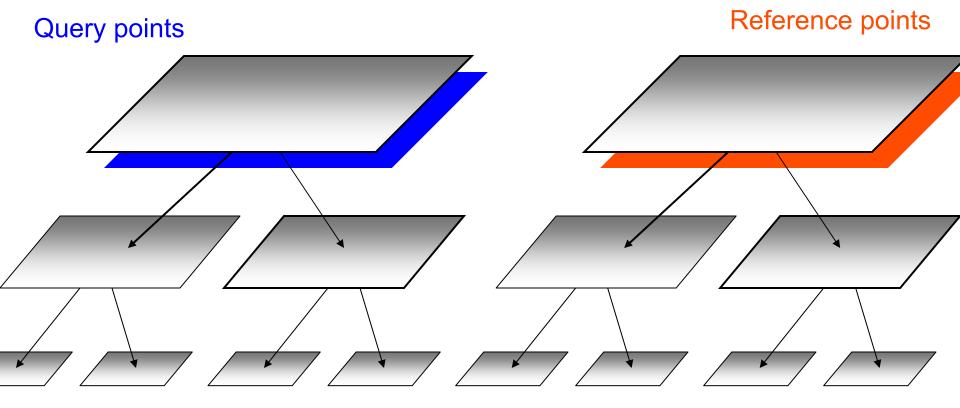
```
if approximate(Q,R), return.
```

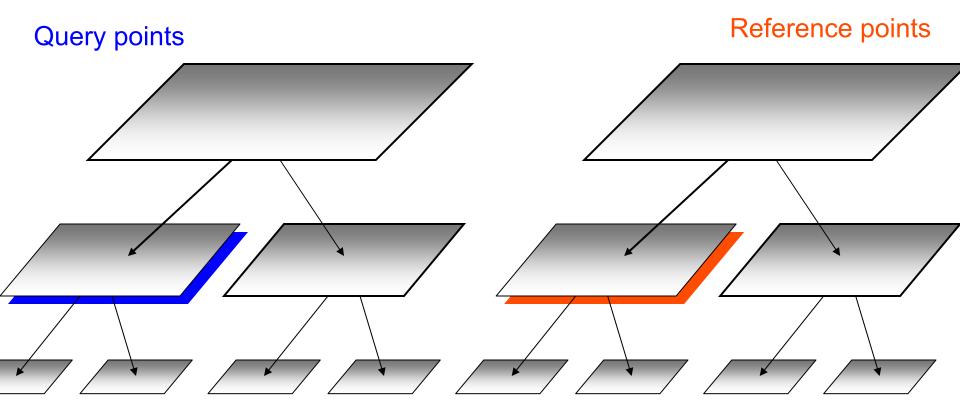
```
if leaf(Q) and leaf(R), DualTreeBase(Q,R). else,
```

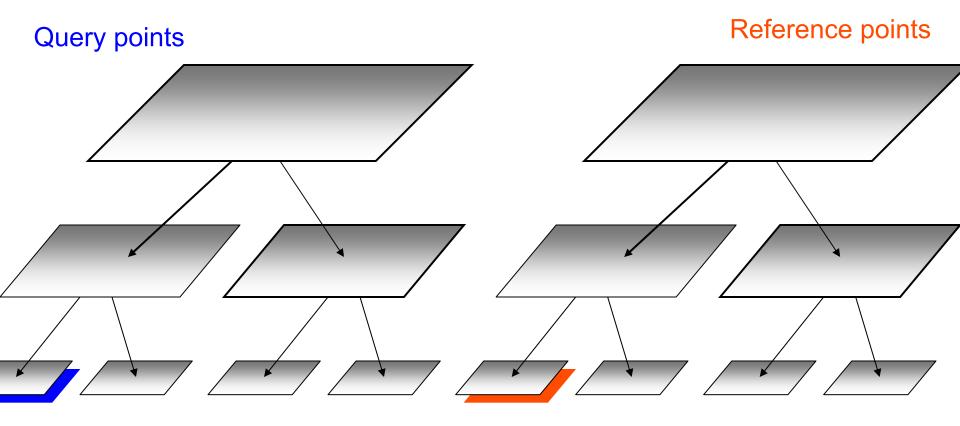
DualTree(Q.left,R.left). DualTree(Q.left,R.right). DualTree(Q.right,R.left). DualTree(Q.right,R.right).

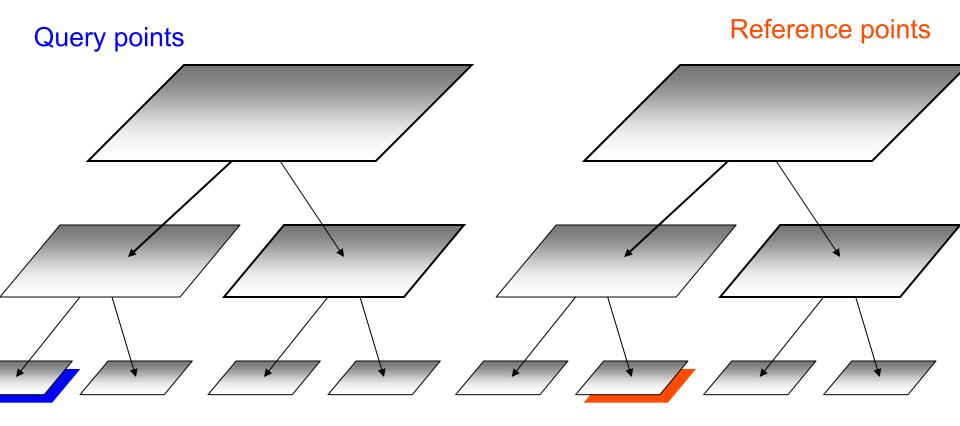
(NN or range-search: recurse on the closer node first)

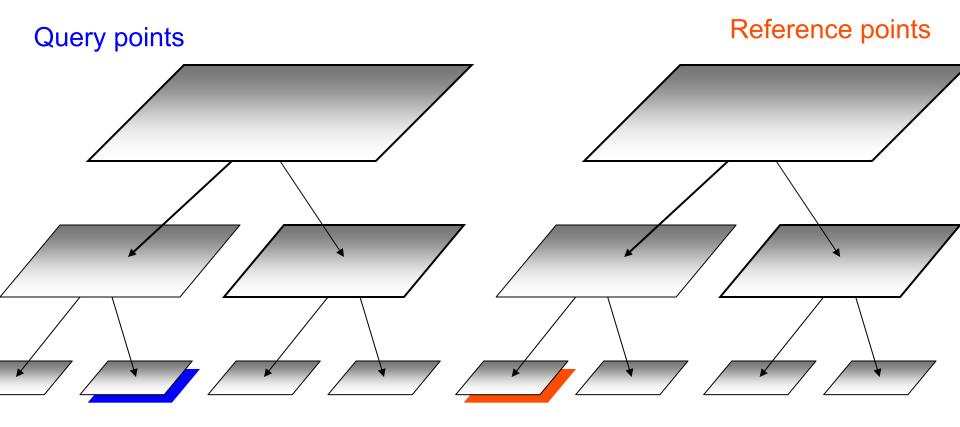
(depth-first)

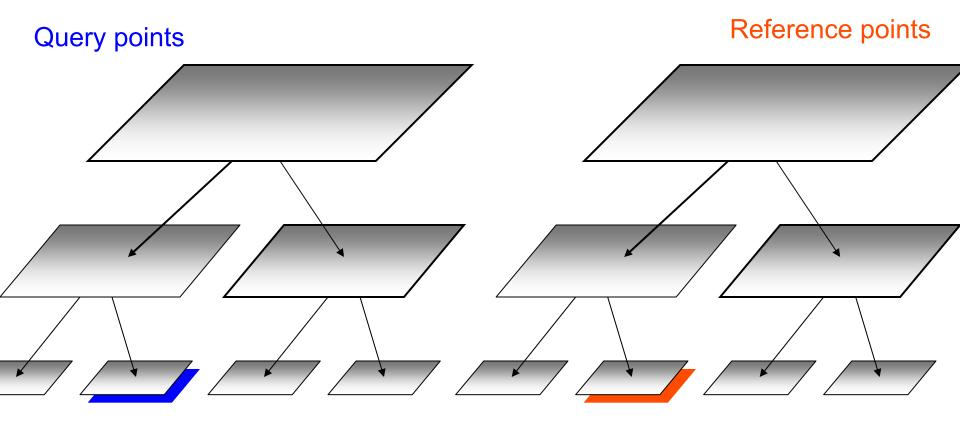


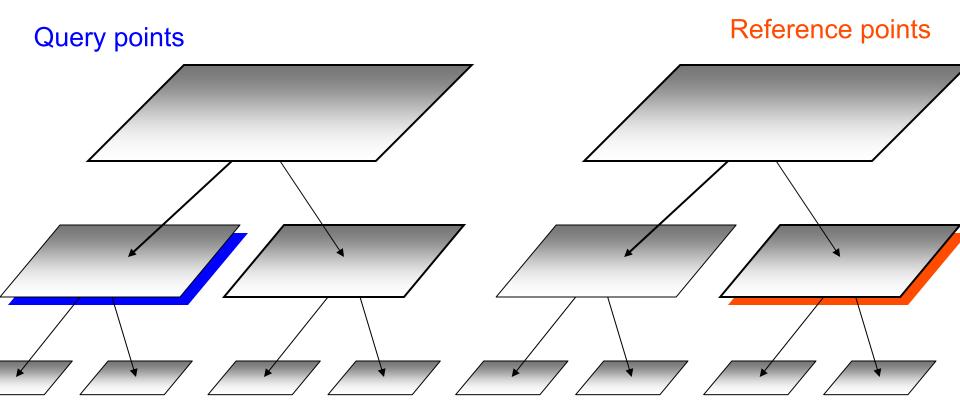


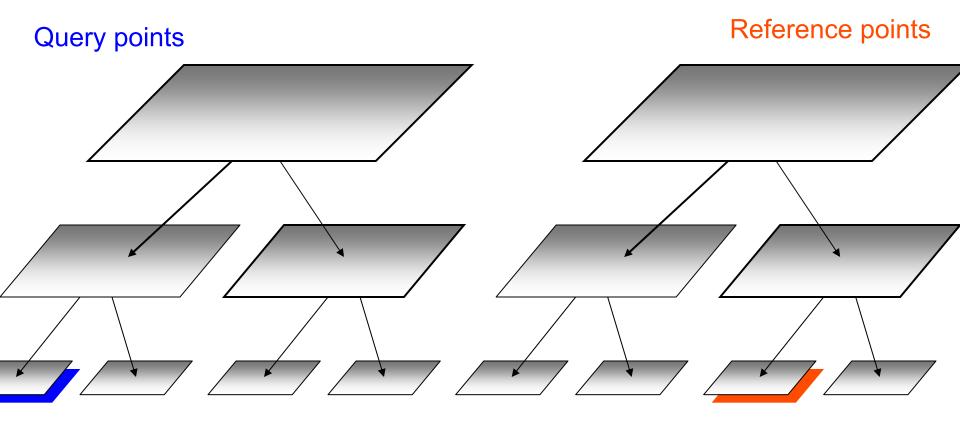


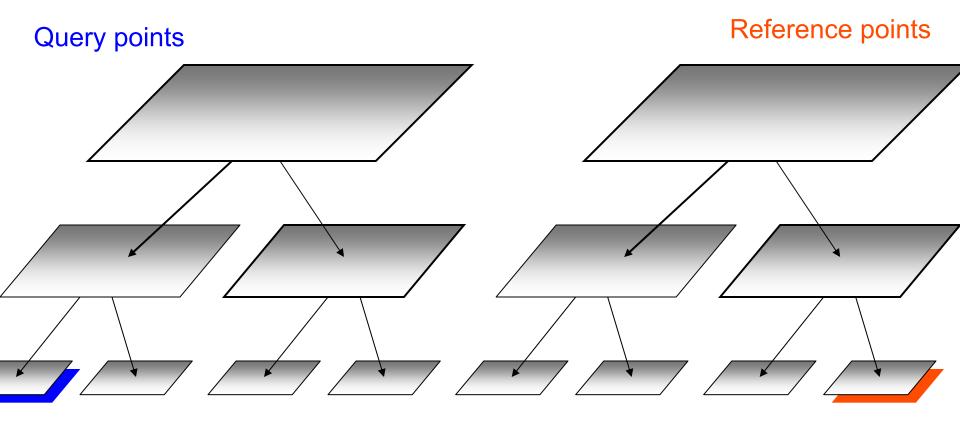


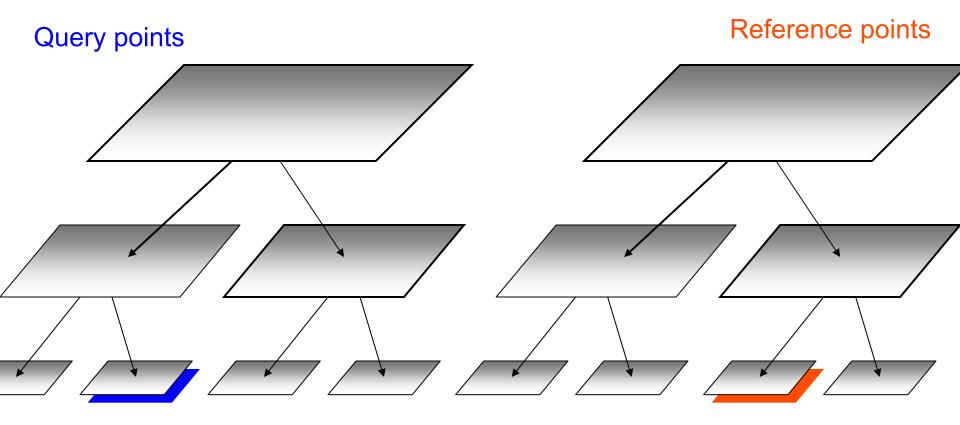


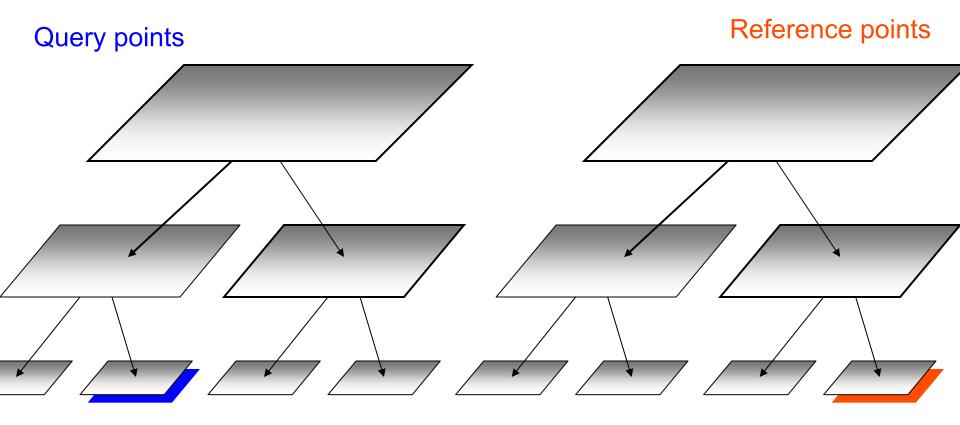


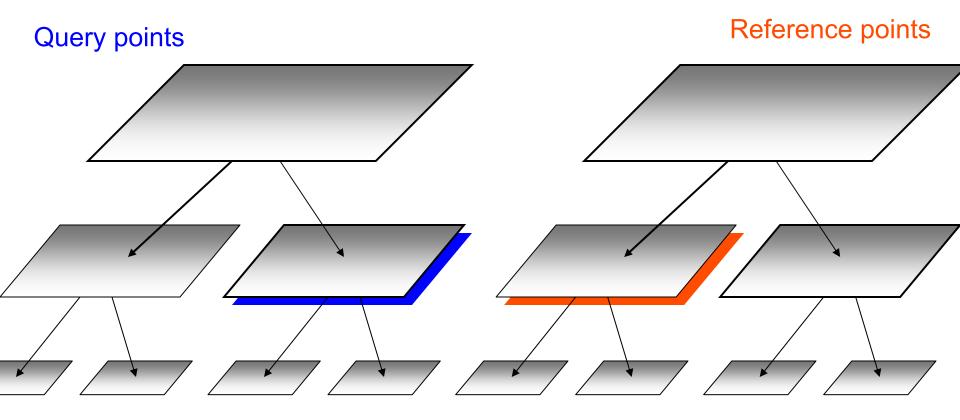


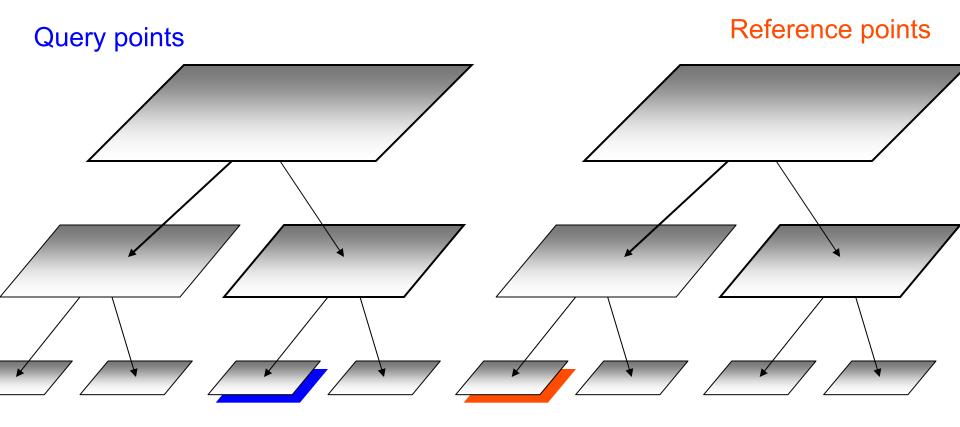


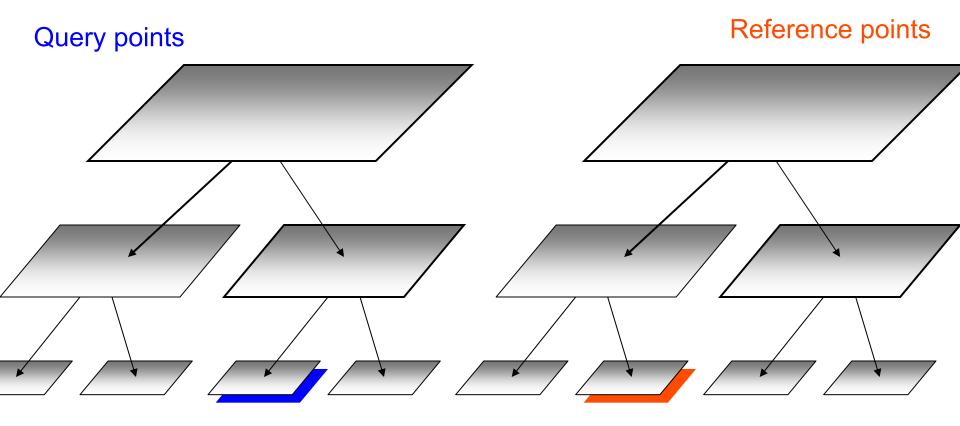


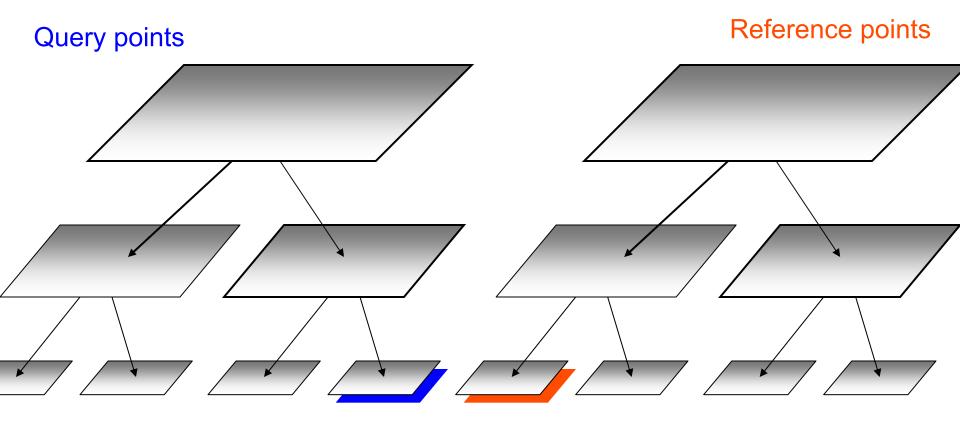


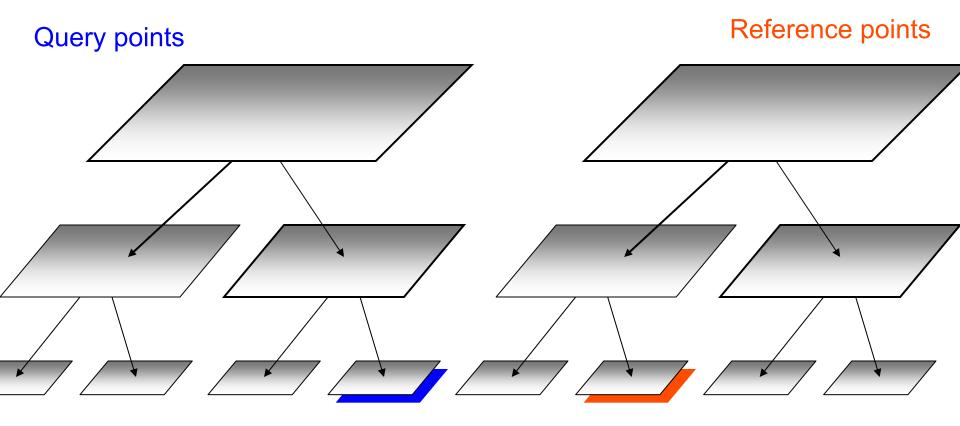


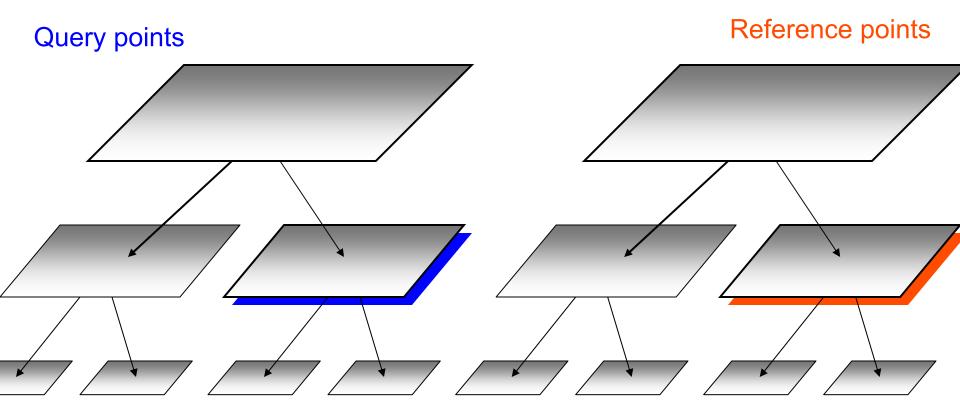


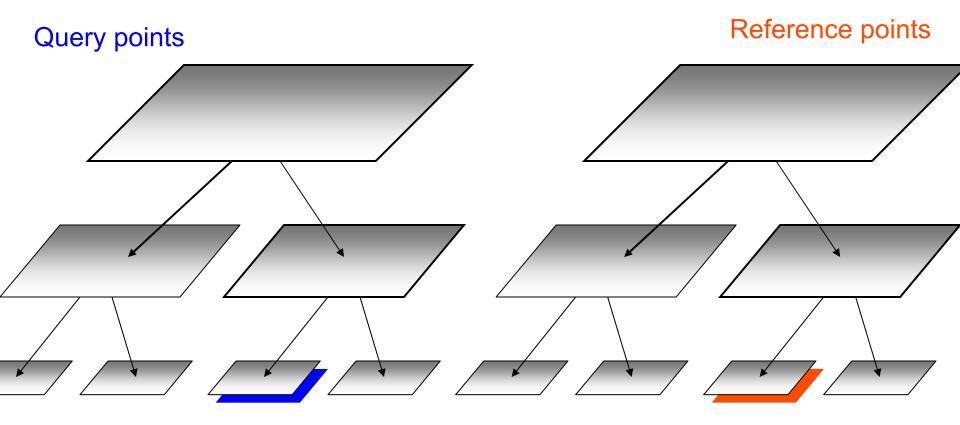


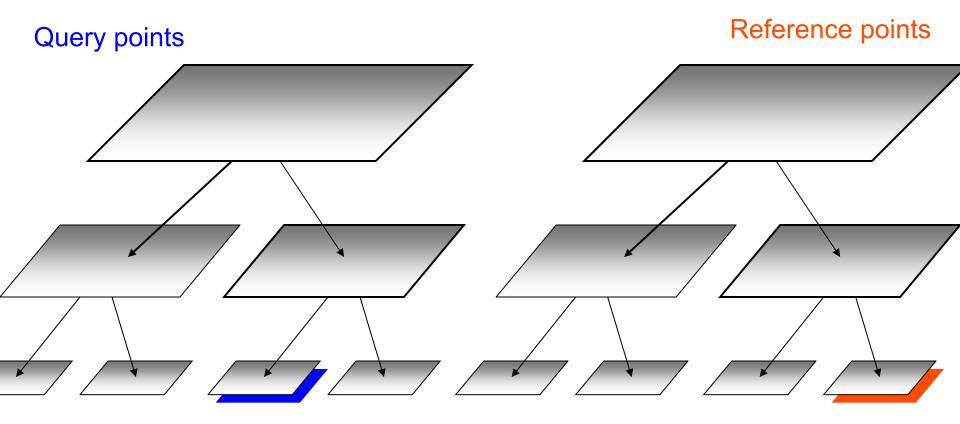


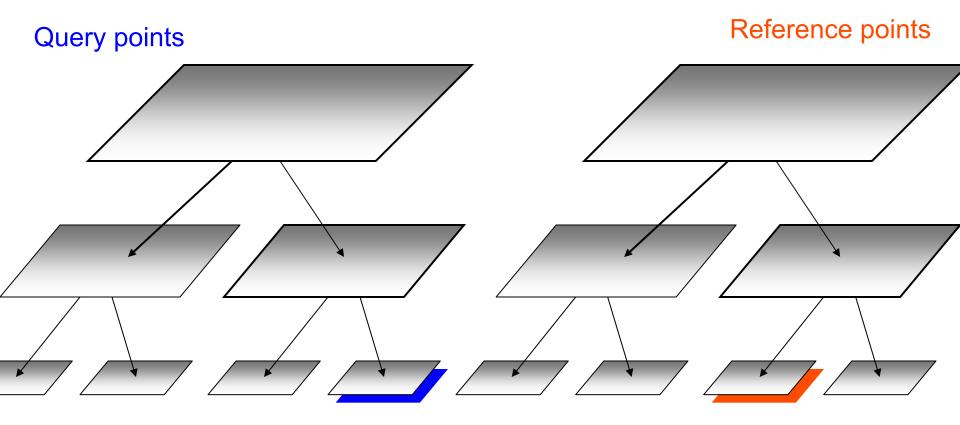


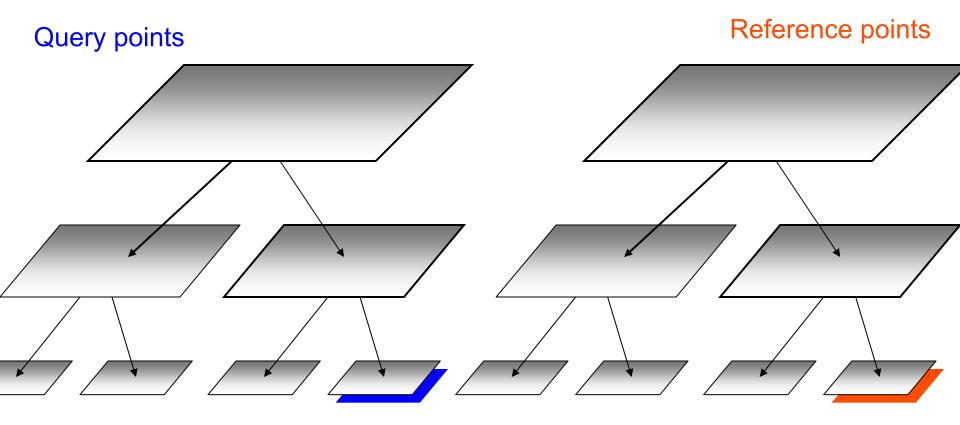












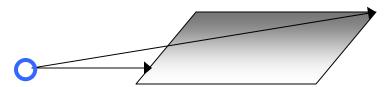
Finite-difference function approximation.

Taylor expansion:

$$f(x) \approx f(a) + f'(a)(x-a)$$

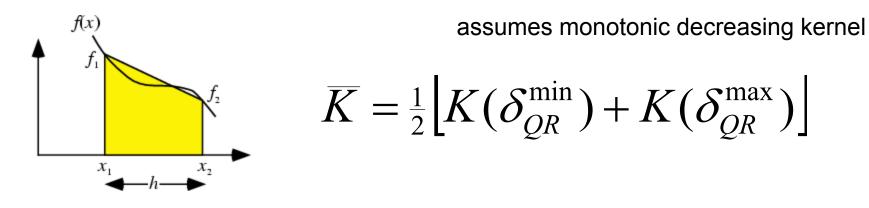
Gregory-Newton finite form:

$$f(x) \approx f(x_i) + \frac{1}{2} \left(\frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} \right) (x - x_i)$$



$$K(\delta) \approx K(\delta^{\min}) + \frac{1}{2} \left(\frac{K(\delta^{\max}) - K(\delta^{\min})}{\delta^{\max} - \delta^{\min}} \right) (\delta - \delta^{\min})$$

Finite-difference function approximation.



$$err_{q} = \sum_{r}^{N_{R}} \left| K\left(\delta_{qr}\right) - \overline{K} \right| \leq \frac{N_{R}}{2} \left[K\left(\delta_{QR}^{\min}\right) - K\left(\delta_{QR}^{\max}\right) \right]$$

could also use center of mass

Stopping rule: approximate if *s* > *r*

Simple approximation method

approximate(Q,R)
{
 dl = N_RK(
$$\delta_{max}$$
), du = N_RK(δ_{min}).
 if $\delta_{min} \ge s_{min} \cdot max(diam(Q), diam(R))$
 incorporate(dl, du).
}

→trivial to change kernel
→hard error bounds

Runtime analysis

THEOREM: Dual-tree algorithm is **O(N)**

ASSUMPTION: N points from density f

$$0 < c \le f \le C$$

Recurrence for self-finding

single-tree (point-node)

$$T(N) = T(N/2) + O(1)$$
$$T(1) = O(1) \implies N \cdot O(\log N)$$

dual-tree (node-node)

$$T(N) = 2T(N/2) + O(1)$$
$$T(1) = O(1) \Rightarrow O(N)$$

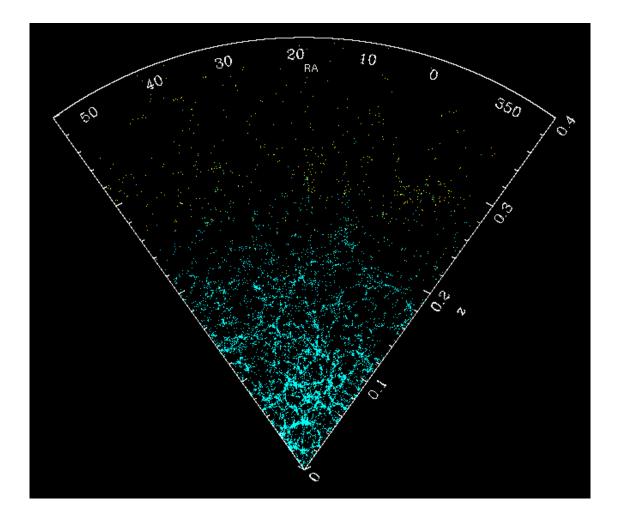
Packing bound

LEMMA: Number of nodes that are *well-separated* from a query node Q is bounded by a constant $[1+g(s,c,C)]^D$

Thus the recurrence yields the entire runtime. Done.

CONJECTURE: should actually be *D'* (the intrinsic dimension).

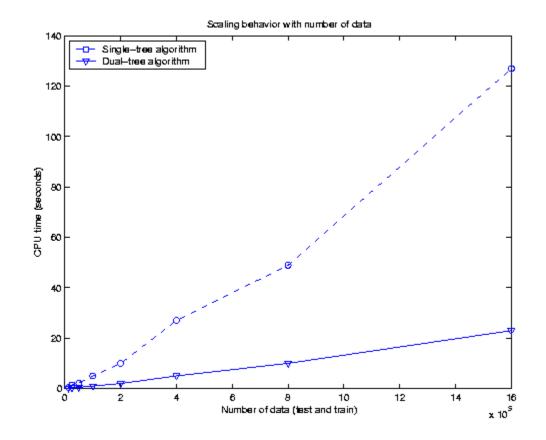
Real data: SDSS, 2-D



Speedup Results: Number of points

		dual-
N	naïve	tree
12.5K	7	.12
25K	31	.31
50K	123	.46
100K	494	1.0
200K	1976*	2
400K	7904*	5
800K	31616*	10
1.6M	35 hrs	23

5500x



One order-of-magnitude speedup over single-tree at ~2M points

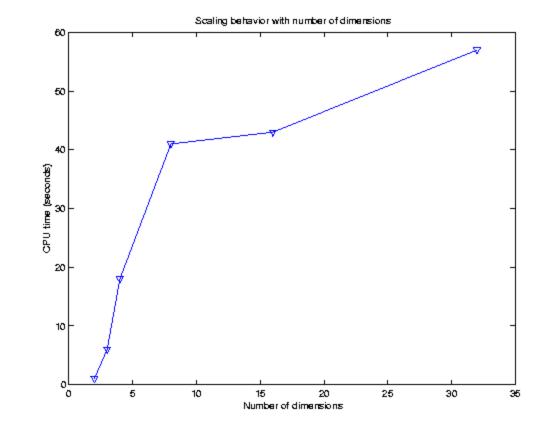
Speedup Results: Different kernels

Ν	Epan. C	Gauss
12.5K	.12	.32
25K	.31	.70
50K	.46	1.1
100K	1.0	2
200K	2	5
400K	5	11
800K	10	22
1.6M	23	51

Epanechnikov: 10⁻⁶ relative error Gaussian: 10⁻³ relative error

Speedup Results: Dimensionality

Ν	Epan. C	Gauss
12.5K	.12	.32
25K	.31	.70
50K	.46	1.1
100K	1.0	2
200K	2	5
400K	5	11
800K	10	22
1.6M	23	51



Speedup Results: Different datasets

Name	Ν	D	Time (sec)
Bio5	103K	5	10
CovType	136K	38	8
MNIST	10K	784	24
PSF2d	3M	2	9

Meets desiderata? Nonparametric statistics

- Accuracy good enough? yes
- Separate query and reference datasets? yes
- Variable-scale kernels? yes
- Multiple scales simultaneously? yes
- Nonisotropic kernels? yes
- Arbitrary dimensionality? yes, but not ultra-high
- Allows all desired kernels? mostly
- Extends to regression, locally-weighted, etc.? yes
- Field-tested, compared to existing methods? yes
- → [Gray and Moore, 2003]

Meets desiderata? Smoothed particle hydrodynamics

- Accuracy good enough? yes
- Variable-scale kernels? yes
- Nonisotropic kernels? yes
- Allows all desired kernels? yes
- Edge-effect corrections (mixed kernels)? yes
- Highly non-uniform data? yes
- Fast tree-rebuilding? yes, soon perhaps faster
- Time stepping integrated? no
- Field-tested, compared to existing methods? no

Meets desiderata? Coulombic simulation

- Accuracy good enough? open question
- Allows multipole expansions? yes
- Allows all desired kernels? yes
- Fast tree-rebuilding? yes, soon perhaps faster
- Time stepping integrated? no
- Field-tested, compared to existing methods? no
- Parallelized? no

Summary

- O(N) can be achieved <u>independent of multipole</u> <u>expansions</u>; provable rather than arguable
- New lightweight dual-tree algorithm: explores
 <u>tradeoff between geometry and approximation</u>
- Well-suited to statistics problems; plausibly useful in physics problems
- → Looking for comments and collaborators! agray@cs.cmu.edu

Simple recursive algorithm

```
DualTree(Q,R)
```

```
if approximate(Q,R), return.
```

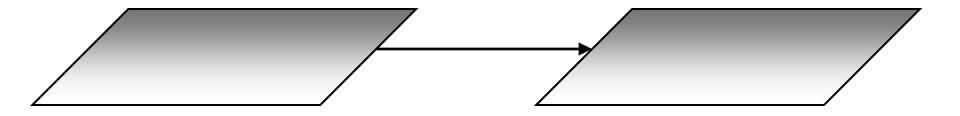
```
if leaf(Q) and leaf(R), DualTreeBase(Q,R). else,
```

DualTree(Q.left,closer-of(R.left,R.right)). DualTree(Q.left,farther-of(R.left,R.right)). DualTree(Q.right,closer-of(R.left,R.right)). DualTree(Q.right,farther-of(R.left,R.right)).

(Actually, recurse on the closer node first)

Exclusion and inclusion, using *kd*-tree <u>node-node</u> bounds.

O(D) bounds on distance minima/maxima:

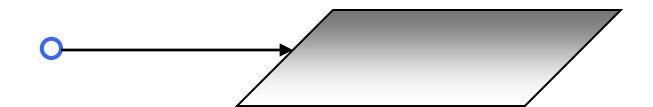


(Analogous to point-node bounds.)

Also needed: Nodewise bounds.

Exclusion and inclusion, using point-node *kd*-tree bounds.

O(D) bounds on distance minima/maxima:



$$\min_{i} ||x - x_{i}|| \ge \sum_{d}^{D} \left[\max\{(l_{d} - x_{d})^{2}, 0\} + \max\{(x_{d} - u_{d})^{2}, 0\} \right]$$
$$\max_{i} ||x - x_{i}|| \le \sum_{d}^{D} \max\{(u_{d} - x_{d})^{2}, (x_{d} - l_{d})^{2}\}$$

old stopping criterion

 $\forall q, R: \frac{err_{qR}}{\phi(x_a)} \leq \frac{N_R}{N} \varepsilon \Longrightarrow \forall q: \frac{err_q}{\phi(x_a)} \leq \varepsilon$

old approximation method

approximate(Q,R)
{

$$dl = N_R K(\delta_{max}), du = N_R K(\delta_{min}).$$

if $K(\delta_{min}) - K(\delta_{max}) \le \frac{2\varepsilon}{N} \phi_{min}(Q)$
incorporate(dl , du). return.
}

→just set error tolerance, no tweak parameters
→hard error bounds