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• Stealth

• Electromagnetic interference

• Antennas on complex platforms (ships/aircraft)

• Packaging, mixed-signal analysis

• Wideband antennas

• etc.
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• Fast Multipole Methods 

– O(N) or O(N log N) techniques for applying dense 
“method of moment” matrices

• Discretization schemes

– High order accuracy, even with geometric 
singularities

• Integral equation formulations

– Closed and open surfaces, complex materials

• Fast, Direct Solvers for Ill-Conditioned Problems

– handle near resonances, modal analysis
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• Wideband performance 

• Tunable precision

• Automatic adaptivity 

• Geometric flexibility

• Modular software construction
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• When solving integral equations with FMM 

acceleration, an expensive step is the calculation of 

quadratures for near neighbor interactions

• We have developed robust universal rules:

– Space divided into regions 

– Generalized Gaussian quadratures derived for each
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• These rules can incorporate families of singularities to 

achieve high order accuracy even in the presence of 

corners
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2,520 points, 10th order accuracy, 50λ / ship
22 seconds (1GHz Pentium 3 Laptop)



MadMax Optics 9

15,120 points, 10th order accuracy, 50λ / ship
5 minutes (1GHz Pentium 3 Laptop)
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30,000 panels

60 iterations, 100 matrix-vector multiplications

Solution time: 5 minutes (Pentium IV, 1.6GHz)
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• Core FMM technology is reasonably mature from 

zero to hundreds of wavelengths

– Remaining issues are software issues: Code 

optimization, Supportability, Parallel platforms, etc.

• Integral equation formulations are reasonably mature 

for piecewise isotropic materials with closed surfaces

– Open surfaces still active area of research

• Geometric singularities in three dimensions

– Active area of research
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• Anisotropic materials

– Volume integral equations vs. FEM/BEM hybrids

– Core library tools to be developed include fast 

volume integral techniques (FFT and FMM based)

• Resonant cavities, Modal Analysis

– Not suitably addressed by existing algorithms

– Iterative methods (frequency domain) converge 

poorly. Marching methods (time domain) take 

excessively many steps. 
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• Can one construct FMM-type schemes which will 

yield “sparse” factorizations of the solution operator 

for an integral equation?

• This would overcome the difficulties with iterative 

methods and allow more efficient solution of 

problems with multiple right-hand sides 
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• 1989:  Chew - O(n2) direct solver for n “small”

scatterers in two dimensions

• 1991:  G- and Rokhlin - O(n) direct solver for dense 

linear systems that arise from one-dimensional 

integral equations

• 1993   Canning - matrix compression 

• 1993  Alpert, Beylkin, Coifman, Rokhlin -

Wavelet-based compression

• 1995  Lu and Chew – O(n2)  direct solver for volume 

integrals in three dimensions
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• 1996:  Michielssen, Boag, Chew:

O(n log2 n) direct solver for elongated objects

• 1997   Lee and G-

Automatic mesh refinement for SKIE

• 2001   Gope and Jandhyala 

O(n2.3) solver for non-oscillatory boundary integral 

equations (capacitance extraction, etc.)

• 2002   Chen

O(n1.5) solver for volume integral equations in two 

dimensions
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• Consider the ODE

u''(x) + p(x) u'(x) + q(x) u(x) = f(x)

u(0) = u(1) = 0

• Seek representation in the form

u(x) = ∫ G(x,t) s(t) dt

where G(x,t) is the Green’s function for the 1D 

Laplace operator with zero Dirichlet conditions.



MadMax Optics 20

• Obtain Fredholm integral equation of second kind

s(x) + p(x) ∫ Gx(x,t) s(t) dt + q(x) ∫ G(x,t) s(t) dt = f(x)

or P s = f

where P is a dense matrix. 

How can one solve this directly in less than O(N3) time?
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• Simple recursive scheme leads to O(N log N) 

algorithm which requires

– Compressed representation of all low rank submatrices

– Sherman-Morrison-Woodbury formula

• More complex scheme leads to O(N p2) algorithm 

where p is the desired order of accuracy.
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10 pts/ λ

11 digit accuracy
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Solution is

linear combination

of Airy functions

ε u’’ – x u = 0
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Solution is

linear combination

of parabolic cylinder

functions

ε u’’ + x u’ – u/2 = 0 
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• Currently O(n3/2) for oscillatory problems (like the 

algorithms of Chew and Chen) but applicable to 

boundary integral equations as well as volume 

integral equations

• Sparse factorization can be updated when geometry 

is perturbed
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• Solve ∇2 u + k2 (1 + q(x)) u = 0 

with Sommerfeld condition at infinity.

• Letting G(x,y) = H0( ||x-y||), we obtain Lippman-

Schwinger equation

u(x) + k2 ∫ G(x,t) q(t) u(t) dt = f(x)
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• Given an (m x n) matrix A of ε-rank k, there exists a 
(k x k) submatrix of A denoted by Ak,k and mappings 
proj: Cm � C k and eval : C k � C n such that the 
condition numbers of proj and eval are less than 
(2√k) and

A ≈ eval o Ak,k o proj

• Similar to SVD

• Cheng, Gimbutas, Martinsson, Rokhlin

• Gu and Eisenstadt
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• Suppose one has a collection of m charges in S and the matrix A 
describes the field induced at n target points in T.

• Then there is a subset of  those same m charges of dimension k 
that can be used to represent the field in T to precision ε.

• Likewise, there is a subset of the n targets in T of dimension k 
from which the field at all n targets can be generated to precision 
ε.
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• The choice of the k-dimensional subset, called a skeleton, is not 
unique.

• Moreover, incoming and outgoing skeletons can be the same

• We define scattering matrix for region D as mapping from 
incoming field at all points in D to “charge” strengths at all points 
in D which describe the outgoing field 
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• Interaction matrices can be compressed using 

“skeletonized” scattering matrices

• Allows recursion

F

D

G

E
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• Begin with hierarchical subdivision of scatterer (like 
the finest level of an FMM data structure).

• Compress interactions between each subregion and 
“rest of world” O(N3/2) work

• Upward pass: merge scattering matrices

• Downward pass: construct splitting and exchange 
matrices  (analogous to FMM translation operators)

(Cheng, Rokhlin)
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• 100 Snowflakes, 15 Wavelengths

• TE excitation

• 15,000 unknowns

• 10 Minutes solve time

• 7 digit accuracy

_________________________________________________

• 400 Ellipses, 50 Wavelengths

• TE excitation

• 60,000 unknowns

• 21 Minutes solve time

• 7 digit accuracy
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MadMax Optics 37

• O(n3/2) for space-filling oscillatory problems in 2D

• O(n log n) for many boundary-value problems in 2D

• Current implementations are memory intensive

• Much work remains for 3D, both analytic and 

numerical



MadMax Optics 38

• Fast Multipole and related techniques have reached 

a point of maturity where top-down, modular design is 

feasible. 

– Requires standard interfaces, supportable software 

infrastructure, and careful library design.

– Will allow rapid development of application layers, and 

standardization of training for nonspecialists.

• Significant research still required for anisotropic 

materials, but there have been promising 

developments (e.g. Boeing, NGC, UIUC) 

• Fast direct solvers are likely to become important for 

large-scale problems near resonance


