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Applications

Stealth

Electromagnetic interference

Antennas on complex platforms (ships/aircraft)
Packaging, mixed-signal analysis

Wideband antennas

etc.



Core Algorithms

Fast Multipole Methods

— O(N) or O(N log N) techniques for applying dense
“method of moment” matrices

Discretization schemes

— High order accuracy, even with geometric
singularities

Integral equation formulations

— Closed and open surfaces, complex materials

Fast, Direct Solvers for |ll-Conditioned Problems

— handle near resonances, modal analysis




Design Goals

* Wideband performance

 Tunable precision

« Automatic adaptivity

metric flexibility

ware construction
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Quadratures

* When solving integral equations with FMM
acceleration, an expensive step is the calculation of
quadratures for near neighbor interactions

 We have developed robust universal rules:
— Space divided into regions
— Generalized Gaussian quadratures derived for each

N
N




Quadratures (cont.)

* These rules can incorporate families of singularities to
achieve high order accuracy even in the presence of

corners
)
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2D Wideband FMM

N k T|=|v||v| Storage TDIR Error
50,000 10-° 19 1.1 MW 1,700 |10/
50,000 10 14 1.1 MW 1,300 |10
50,000 1,000 14 1.2 MW 1,400 |10
50,000 10,000 42 4.8 MW 2,400 |107

500,000 10-° 143 15 MW | 170,000 |10
500,000 10 107 16 MW | 130,000 |107
500,000 1,000 | 110 18 MW | 140,000 | 197
500,000 10,000 218 24 MW | 240,000 |107

Uniform distribution, unit box




2D Wideband FMM
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2D Wideband FMM
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3D Low Frequency FMM

N k Teym i Error
28,000 108 32 800 10-3
28,000 10 33 800 10-3
154,000 108 186 24,000 103
154,000 10 169 27,000 103

Uniform distribution, unit box




3D Low Frequency FMM

N K Temvw | Tor Error
28,000 10-8 60 800 106
28,000 10 61 800 106

154,000 108 286 24,000 106
154,000 10 256 27,000 106

Uniform distribution, unit box




Example: Potential Flow
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30,000 panels
60 iterations, 100 matrix-vector multiplications
Solution time: 5 minutes (Pentium IV, 1.6GHz)




Example: Acoustic Scattering

averaged power density from scattered wave only x 10
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Part 1 Summary

Core FMM technology is reasonably mature from
zero to hundreds of wavelengths

— Remaining issues are software issues: Code
optimization, Supportability, Parallel platforms, etc.

Integral equation formulations are reasonably mature
for piecewise isotropic materials with closed surfaces

— Open surfaces still active area of research

Geometric singularities in three dimensions
— Active area of research




Part 1 Summary (cont.)

* Anisotropic materials
— Volume integral equations vs. FEM/BEM hybrids

— Core library tools to be developed include fast
volume integral techniques (FFT and FMM based)

« Resonant cavities, Modal Analysis
— Not suitably addressed by existing algorithms

— lterative methods (frequency domain) converge
poorly. Marching methods (time domain) take
excessively many steps.




Part 2: Fast Direct Solvers

« Can one construct FMM-type schemes which will
yield “sparse” factorizations of the solution operator
for an integral equation?

 This would overcome the difficulties with iterative
methods and allow more efficient solution of
problems with multiple right-hand sides



Brief History

1989: Chew - O(n?) direct solver for n “small”
scatterers in two dimensions

1991:. G- and Rokhlin - O(n) direct solver for dense
linear systems that arise from one-dimensional
iIntegral equations

1993 Canning - matrix compression
1993 Alpert, Beylkin, Coifman, Rokhlin -
Wavelet-based compression

1995 Lu and Chew — O(n?) direct solver for volume
Integrals in three dimensions



Brief History

1996: Michielssen, Boag, Chew:

O(n log? n) direct solver for elongated objects

1997 Lee and G-

Automatic mesh refinement for SKIE

2001 Gope and Jandhyala

O(n?3) solver for non-oscillatory boundary integral
equations (capacitance extraction, etc.)

2002 Chen

O(n'-%) solver for volume integral equations in two
dimensions



Simplest Example

« Consider the ODE
u"(x) + p(x) u'(x) + q(x) u(x) = f(x)
u@)=u(1)=0

» Seek representation in the form
u(x) = | G(x,t) s(t) dt

where G(x,t) is the Green’s function for the 1D
Laplace operator with zero Dirichlet conditions.



Simplest Example

* Obtain Fredholm integral equation of second kind
s(x) + p(x) | Go(x,t) s(t) dt + q(x) [ G(x,t) s(t) dt = f(x)

or Ps=f

where P is a dense matrix.

How can one solve this directly in less than O(N?3) time?




Simplest Example




Simplest Example

« Simple recursive scheme leads to O(N log N)
algorithm which requires
— Compressed representation of all low rank submatrices
— Sherman-Morrison-Woodbury formula

« More complex scheme leads to O(N p?) algorithm
where p is the desired order of accuracy.



Bessel equation

Error(step)

1 digit accuracy

Bessel equation
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Turning Point

Turnin‘g pointr . u(x)
eu’ —xu=0 N
Solution is "
linear combination
of Airy functions




ceu +xu —-u/2=0

Solution is
linear combination
parabolic cylinder

ErrEst(step)
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Two Dimensions

« Currently O(n%2) for oscillatory problems (like the
algorithms of Chew and Chen) but applicable to
boundary integral equations as well as volume
Integral equations

« Sparse factorization can be updated when geometry
IS perturbed



Model Problem (2D)

« Solve VZu+k?(1+qg(x))u=0
with Sommerfeld condition at infinity.

» Letting G(x,y) = Hy( ||x-y]|), we obtain Lippman-
Schwinger equation

u(x) + k2 | G(x,t) q(t) u(t) dt = f(x)



Analytical Fact

Given an (m x n) matrix A of e-rank k, there exists a
(k x k) submatrix of A denoted by Akk and mappings
proj: C"=> Ckand eval : C k> C " such that the
condition numbers of proj and eval are less than
(2vk) and

A= evalo Ay oproj

Similar to SVD
Cheng, Gimbutas, Martinsson, Rokhlin
Gu and Eisenstadt



Physical Interpretation

D

S T

Suppose one has a collection of m charges in S and the matrix A
describes the field induced at n target points in T.

Then there is a subset of those same m charges of dimension k
that can be used to represent the field in T to precision .

Likewise, there is a subset of the n targets in T of dimension k
from which the field at all n targets can be generated to precision
c.



Skeletons

D

S T

The choice of the k-dimensional subset, called a skeleton, is not
unique.

Moreover, incoming and outgoing skeletons can be the same

We define scattering matrix for region D as mapping from
incoming field at all points in D to “charge” strengths at all points
in D which describe the outgoing field
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Benefit

* |nteraction matrices can be compressed using
“skeletonized” scattering matrices

 Allows recursion



Procedure

Begin with hierarchical subdivision of scatterer (like
the finest level of an FMM data structure).

Compress interactions between each subregion and
“rest of world” O(N32) work

Upward pass: merge scattering matrices

Downward pass: construct splitting and exchange
matrices (analogous to FMM translation operators)

(Cheng, Rokhlin)



100 dielectric bodies




Numerical Results

100 Snowflakes, 15 Wavelengths
TE excitation

15,000 unknowns

10 Minutes solve time

7 digit accuracy

400 Ellipses, 50 Wavelengths
TE excitation

60,000 unknowns

21 Minutes solve time

7 digit accuracy



Martinsson, Rokhlin
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K Teactor | Tsowve | Error

800 435 | 21 15 s .003 s 107
3,200 683 |79 93s 12s 10-7
12,800 1,179 | 316 180 s 39 s 107
25,600 1,753 {632 |[430s 7.5s 10-7




Summary (Part 2)

O(n3%2) for space-filling oscillatory problems in 2D
O(n log n) for many boundary-value problems in 2D
Current implementations are memory intensive

Much work remains for 3D, both analytic and
numerical



Conclusions

« Fast Multipole and related techniques have reached
a point of maturity where top-down, modular design is
feasible.

— Requires standard interfaces, supportable software
infrastructure, and careful library design.

— Will allow rapid development of application layers, and
standardization of training for nonspecialists.

« Significant research still required for anisotropic
materials, but there have been promising
developments (e.g. Boeing, NGC, UIUC)

« Fast direct solvers are likely to become important for
large-scale problems near resonance



