FMM Code Libraries for Computational Electromagnetics

Leslie Greengard New York University, MadMax Optics, Inc.

Applications

- Stealth
- Electromagnetic interference
- Antennas on complex platforms (ships/aircraft)
- Packaging, mixed-signal analysis
- Wideband antennas
- etc.

Core Algorithms

- Fast Multipole Methods
 - O(N) or O(N log N) techniques for applying dense
 "method of moment" matrices
- Discretization schemes
 - High order accuracy, even with geometric singularities
- Integral equation formulations
 - Closed and open surfaces, complex materials
- Fast, Direct Solvers for Ill-Conditioned Problems
 - handle near resonances, modal analysis

Design Goals

- Wideband performance
- Tunable precision
- Automatic adaptivity
- Geometric flexibility
- Modular software construction

Quadratures

- When solving integral equations with FMM acceleration, an expensive step is the calculation of quadratures for near neighbor interactions
- We have developed robust universal rules:
 - Space divided into regions
 - Generalized Gaussian quadratures derived for each

Quadratures (cont.)

 These rules can incorporate families of singularities to achieve high order accuracy even in the presence of corners

2D Wideband FMM

N	k	Т _{FMM}	Storage	T _{DIR}	Error
50,000	10 ^{- 5}	19	1.1 MW	1,700	10 ⁻⁷
50,000	10	14	1.1 MW	1,300	10 ⁻⁷
50,000	1,000	14	1.2 MW	1,400	10 ⁻⁷
50,000	10,000	42	4.8 MW	2,400	10 ⁻⁷
500,000	10 ^{- 5}	143	15 MW	170,000	10 ⁻⁷
500,000	10	107	16 MW	130,000	10 ⁻⁷
500,000	1,000	110	18 MW	140,000	10 ⁻⁷
500,000	10,000	218	24 MW	240,000	10 ⁻⁷

Uniform distribution, unit box

2D Wideband FMM

2,520 points, 10th order accuracy, 50λ / ship 22 seconds (1GHz Pentium 3 Laptop)

2D Wideband FMM

15,120 points, 10th order accuracy, 50 λ / ship 5 minutes (1GHz Pentium 3 Laptop)

3D Low Frequency FMM

N	k	T _{FMM}	T _{DIR}	Error
28,000	10 ⁻⁸	32	800	10 ⁻³
28,000	10	33	800	10 ⁻³
154,000	10 ⁻⁸	186	24,000	10 ⁻³
154,000	10	169	27,000	10 ⁻³

Uniform distribution, unit box

3D Low Frequency FMM

N	k	T _{FMM}	T _{DIR}	Error
28,000	10 ⁻⁸	60	800	10 ⁻⁶
28,000	10	61	800	10 ⁻⁶
154,000	10 ⁻⁸	286	24,000	10 ⁻⁶
154,000	10	256	27,000	10 ⁻⁶

Uniform distribution, unit box

Example: Potential Flow

30,000 panels 60 iterations, 100 matrix-vector multiplications Solution time: 5 minutes (Pentium IV, 1.6GHz)

MadMax Optics

Example: Acoustic Scattering

Part 1 Summary

- <u>Core FMM technology is reasonably mature from</u> <u>zero to hundreds of wavelengths</u>
 - Remaining issues are software issues: Code optimization, Supportability, Parallel platforms, etc.
- Integral equation formulations are reasonably mature for piecewise isotropic materials with closed surfaces
 - Open surfaces still active area of research
- Geometric singularities in three dimensions
 - Active area of research

Part 1 Summary (cont.)

- Anisotropic materials
 - Volume integral equations vs. FEM/BEM hybrids
 - Core library tools to be developed include fast volume integral techniques (FFT and FMM based)
- <u>Resonant cavities, Modal Analysis</u>
 - Not suitably addressed by existing algorithms
 - Iterative methods (frequency domain) converge poorly. Marching methods (time domain) take excessively many steps.

Part 2: Fast Direct Solvers

- Can one construct FMM-type schemes which will yield "sparse" factorizations of the solution operator for an integral equation?
- This would overcome the difficulties with iterative methods and allow more efficient solution of problems with multiple right-hand sides

Brief History

- 1989: Chew O(n²) direct solver for n "small" scatterers in two dimensions
- 1991: G- and Rokhlin O(n) direct solver for dense linear systems that arise from one-dimensional integral equations
- 1993 Canning matrix compression
- 1993 Alpert, Beylkin, Coifman, Rokhlin -Wavelet-based compression
- 1995 Lu and Chew O(n²) direct solver for volume integrals in three dimensions

Brief History

- 1996: Michielssen, Boag, Chew: O(n log² n) direct solver for elongated objects
- 1997 Lee and G-

Automatic mesh refinement for SKIE

2001 Gope and Jandhyala

O(n^{2.3}) solver for non-oscillatory boundary integral equations (capacitance extraction, etc.)

• 2002 Chen

O(n^{1.5}) solver for volume integral equations in two dimensions

Consider the ODE

u''(x) + p(x) u'(x) + q(x) u(x) = f(x)u(0) = u(1) = 0

Seek representation in the form
 u(x) = ∫ G(x,t) s(t) dt

where G(x,t) is the Green's function for the 1D Laplace operator with zero Dirichlet conditions.

Obtain Fredholm integral equation of second kind

 $s(x) + p(x) \int G_x(x,t) s(t) dt + q(x) \int G(x,t) s(t) dt = f(x)$

or Ps = f

where P is a dense matrix.

How can one solve this directly in less than O(N³) time?

- Simple recursive scheme leads to O(N log N) algorithm which requires
 - Compressed representation of all low rank submatrices
 - Sherman-Morrison-Woodbury formula
- More complex scheme leads to O(N p²) algorithm where p is the desired order of accuracy.

Bessel equation

10 pts/ λ

11 digit accuracy

Turning Point

Solution is linear combination of Airy functions

Cusp

$$\varepsilon u'' + x u' - u/2 = 0$$

Solution is linear combination of parabolic cylinder functions

Two Dimensions

- Currently O(n^{3/2}) for oscillatory problems (like the algorithms of Chew and Chen) but applicable to boundary integral equations as well as volume integral equations
- Sparse factorization can be updated when geometry is perturbed

Model Problem (2D)

• Solve $\nabla^2 u + k^2 (1 + q(x)) u = 0$

with Sommerfeld condition at infinity.

 Letting G(x,y) = H₀(||x-y||), we obtain Lippman-Schwinger equation

$$u(x) + k^2 \int G(x,t) q(t) u(t) dt = f(x)$$

Analytical Fact

• Given an $(m \times n)$ matrix A of ε -rank k, there exists a $(k \times k)$ submatrix of A denoted by $A_{k,k}$ and mappings proj: $C^m \rightarrow C^k$ and eval : $C^k \rightarrow C^n$ such that the condition numbers of proj and eval are less than $(2\sqrt{k})$ and

$$A \approx eval \circ A_{k,k} \circ proj$$

- Similar to SVD
- Cheng, Gimbutas, Martinsson, Rokhlin
- Gu and Eisenstadt

Physical Interpretation

- Suppose one has a collection of m charges in S and the matrix A describes the field induced at n target points in T.
- Then there is a *subset* of those same m charges of dimension k that can be used to represent the field in T to precision ε.
- Likewise, there is a *subset* of the n targets in T of dimension k from which the field at all n targets can be generated to precision ε.

- The choice of the k-dimensional subset, called a *skeleton*, is not unique.
- Moreover, incoming and outgoing skeletons can be the same
- We define scattering matrix for region D as mapping from incoming field at all points in D to "charge" strengths at all points in D which describe the outgoing field

Example

- Interaction matrices can be compressed using "skeletonized" scattering matrices
- Allows recursion

Procedure

- Begin with hierarchical subdivision of scatterer (like the finest level of an FMM data structure).
- Compress interactions between each subregion and "rest of world" O(N^{3/2}) work
- Upward pass: merge scattering matrices
- Downward pass: construct splitting and exchange matrices (analogous to FMM translation operators)

(Cheng, Rokhlin)

100 dielectric bodies

Numerical Results

- 100 Snowflakes, 15 Wavelengths
- TE excitation
- 15,000 unknowns
- 10 Minutes solve time
- 7 digit accuracy
- 400 Ellipses, 50 Wavelengths
- TE excitation
- 60,000 unknowns
- 21 Minutes solve time
- 7 digit accuracy

N _{INIT}	N _{FINAL}	k	T _{FACTOR}	T _{SOLVE}	Error
800	435	21	15 s	.003 s	10 ⁻⁷
3,200	683	79	53 s	.12 s	10 ⁻⁷
12,800	1,179	316	180 s	.39 s	10 ⁻⁷
25,600	1,753	632	430 s	7.5 s	10 ⁻⁷

Summary (Part 2)

- O(n^{3/2}) for space-filling oscillatory problems in 2D
- O(n log n) for many boundary-value problems in 2D
- Current implementations are memory intensive
- Much work remains for 3D, both analytic and numerical

Conclusions

- Fast Multipole and related techniques have reached a point of maturity where top-down, modular design is feasible.
 - Requires standard interfaces, supportable software infrastructure, and careful library design.
 - Will allow rapid development of application layers, and standardization of training for nonspecialists.
- Significant research still required for anisotropic materials, but there have been promising developments (e.g. Boeing, NGC, UIUC)
- Fast direct solvers are likely to become important for large-scale problems near resonance