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Introduction

Multiple Scattering Problems

Sound propagation in disperse media (particles, 
bubbles, etc.)

Modeling of scattering from environment 
(humans, animals, fish, etc.)

Electromagnetic scattering problems 
(microwaves, optics, etc.)

Efficient parametrization in inverse problems 
(tomography, etc.)

Introduction



Why Multipole Methods?

Introduction

BEM Mesh
5402 nodes
10800 elements
Discretization # Dn=30

Can be used
to compute the field
only for ka < 25 
(for human head < 16.5 kHz)

Run Time for one frequency
on Dual Processor
1 GHz Pentium III ~ 1 day.

Required Maximum Frequency 
to Compare with Experimental
HRIR (22 or 44 kHz), 200 frequencies

Formal Requirement:
ka << Dn

Scattering computation with BEM for a single object

Why Multipole Methods?

Meshless for spherical 
scatterers

Fast

Needs Mesh

Relatively Slow

Introduction

Multipole Methods BEM



Problem 
Formulation

Equations and Boundary Conditions

Helmholtz Equation

Impedance Boundary Conditions

Field Decomposition

Sommerfield Radiation Condition
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Incident Wave

Formulation

Wave Equation
Fourier
Transform



Multipole 
Reexpansion
(T-Matrix) Method

Scattered Field Decomposition

T-Matrix Method

Expansion Coefficients

Singular Basis Functions Hankel Functions

Spherical Harmonics

Vector Form:

dot product



Incident Field Decomposition
and T-matrix for a Single Sphere 

T-Matrix Method

Regular Basis Functions Bessel Functions

Analytical Solution of the Problem:

T-matrix

Isosurfaces For Regular Basis Functions
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Isosurfaces For Singular Basis Functions
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Solution of Multiple Scattering Problem

T-Matrix Method
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Incident Wave

Scattered Wave

Coupled System of Equations:

(S|R)-Translation
Matrix

“Effective” Incident Field



Reexpansions/Translations

T-Matrix Method
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Two Spheres: Convergence with Respect to 
Truncation Number

T-matrix Method
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Three Spheres Comparisons of
BEM & MultisphereHelmholtz

T-matrix Method

BEM: 5184 triangular elements
MH: Ntrunc = 9 (100 coefficients for each sphere)
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Three Spheres, ka1 =3.0255.

Conclusions on T-matrix Method

We used recursive computation of translation matrices 
(Chew, 1992; Gumerov & Duraiswami, 2001). 
In some cases speed up of computations 103-104 times 
compared to BEM.
But… Computational Complexity is O(N3P3)= O(N3 p6),  
where P= p2 is the total length of the vector of expansion 
coefficients. Method is not suitable for large N and ka.
Details can be found in our paper JASA 112(6), 2002, 
2688-2701.

T-matrix Method



Iterative Methods

Reflection Method & 
Krylov Subspace Method (GMRES)

Reflection (Simple Iteration) Method:

General Formulation (used in GMRES)

Iterative Methods



Convergence of Reflection 
Iteration Method

Iterative Methods

Exponential Convergence

Conclusions on Iterative Methods

Both the Reflection Method (RM) and the GMRES converge well, 
while the RM is simpler and faster;
Some problems in convergence were found for larger ka and regular 
spacing of the scatterers;
In iterative methods fast translation algorithms can be used (we
used O(p3)=O(P3/2) fast translation based on sparse matrix 
decomposition of translation operators). This cost potentially can be 
reduced further (we are working on O(PlogP) methods).
Complexity of Iterative Methods in this case O(N2Niter p3); 
Savings in complexity compared to straightforward T-matrix are O(p3

N/Niter)
For N~200, Niter~20, p~10 (P~100) this yields of order 104 times 
savings.

Iterative Methods



Fast Multipole Method

Some Facts on the Fast 
Multipole Methods (FMM)

Introduced by Rokhlin & Greengard (1987,1988) for computation 
of 2D and 3D fields for Laplace Equation;
Reduces complexity of matrix-vector product from O(N2) to O(N)
or O(NlogN) (depends on data structure);
Hundreds of publications for various 1D, 2D, and 3D problems 
(Laplace, Helmholtz, Maxwell, Yukawa Potentials, etc.);
Application to acoustical scattering problems (Koc & Chew, 
1998; JASA);
We taught the first in the country course on FMM fundamentals 
& application at the University of Maryland (2002,2003);
Some technical reports are available online;
A book on the FMM for the 3D Helmholtz equation submitted to 
Academic Press.

FMM



Far and Near Fields
FMM

Neighborhood
(Near Field)

Far Field

Max Level of Space Subdivision



Translations
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Problem:
For the Helmholtz equation absolute and 
uniform convergence can be achieved only for

p > ka. For large ka the FMM with constant p is
very expensive (comparable with straightforward methods);

inaccurate (since keeps much larger number of terms than 
required, which causes numerical instabilities).
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Model of Truncation Number 
Behavior for Fixed Error

p

ka0 ka*

p*

In the multilevel FMM 
we associate its own pl

with each level l:

“Breakdown level”

Box size at level l

Complexity of Single Translation

Translation exponent



Spatially Uniform Data Distributions

Constant!

Complexity of the Optimized FMM 
for Fixed kD0 and Variable N
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Optimum Level for Low 
Frequencies
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Critical Translation Exponent!

computational domain



What Happens if Truncation 
Number is Constant for All Levels?

“Catastrophic Disaster of the FMM”

Source Expansion Errors
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Approximation of the Error

O(p3) Translation Methods



Rotation - Coaxial Translation 
Decomposition (Complexity O(p3))
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It can be proved that for source summation 
problems the truncation numbers can be 
selected based on the above chart when 
using translations with rectangularly
truncated matrices
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High Frequency FMM Error

Results of Computations



Range of Parameters

Number of Spheres: 1-104;

ka: 0.1-10; kD0: 1-100;

Random and regularly spaced grids of 
spheres;

Polydispersity: 0.5-1.5 (ratio to the mean 
radius);

Volume fractions: 0.01-0.2;

Results

Advantages and Defficiencies of Our 
FMM Implementation

O(NlogN) “On fly” computation of neighbor lists, using bit 
interleaving; 

Low memory: one can trade memory for speed;
Rotation-Coaxial Translation Decomposition, Operations with 
Multipole Expansion Coefficients; 

For high frequencies some other methods (diagonal forms, asymptotic 
methods) can be used; Some additional complexity: conversion to the 
space of expansion coefficients;

No precomputation of translation and rotation matrices; 
Low memory: one can trade memory for speed;

For larger problem size the GMRES is more efficient than the 
Reflection Method;

User can switch, but the GMRES can be used as default.
Krylov subspace dimensionalities usually low (of order 10-30).

This implementation is not perfect, but works!



Some Configurations

343 640 1000343 640 1000

Surface Potential Imaging



Some Pictures

100 random spheres 1000 random spheres100 random spheres 1000 random spheres

USE the FMM for Spatial Imaging!

4 spheres (T-matrix straightforward)

Results

Vector of the incident
plane wave

Imaging plane

Scatterers
ka=15.2

Incident Field Total Field Scattered Field



100 random spheres (MLFMM)

Results

ka=1.6 ka=4.8ka=2.8

R G B

1000 random spheres
ka=1



Aposteriory Error Control

Truncation and Iteration Errors

Reflection Method



Convergence for 100 spheres (MLFMM)

Results
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GMRES vs Reflection
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Overall Performance

Dual Xeon 3.2GHz,
3.5 GB RAM,
25% resources utilized
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Computable Problems on 
Desktop PC
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Conclusions

We developed, implemented, and tested the Multilevel Fast 
Multipole Method for computation of multiple scattering 
problems.
Performance of the method depends on a number of controlling 
parameters. At proper selection of these parameters fast and 
accurate results can be achieved.
Some convergence problems in iterative methods were 
observed for short wave propagation in regularly spaced sphere 
grids. This may be due to some internal resonances, which 
should be investigated.

Future work

Development of faster translation algorithms, 
covering higher frequencies;
Extension for non-spherical scatterrers;
Comparisons with continuum (averaging) 
theories and theories of wave propagation in 
random media;
Computations of acoustic fields in disperse 
systems (bubbly liquids, particulate systems);
Comparisons with experimental data.




