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Introduction

" A :
Introduction

Multiple Scattering Problems

m Sound propagation in disperse media (particles,
bubbles, etc.)

m Modeling of scattering from environment
(humans, animals, fish, etc.)

m Electromagnetic scattering problems
(microwaves, optics, etc.)

m Efficient parametrization in inverse problems
(tomography, etc.)




Introduction

Why Multipole Methods?

Scattering computation with BEM for a single object

BEM Mesh
5402 nodes
10800 elements

Can be used

to compute the field

only for ka < 25

(for human head < 16.5 kHz)

Discretization # Dn=30 /

Formal Requirement:
ka << Dn

Run Time for one frequency
on Dual Processor
1 GHz Pentium 11l ~ 1 day.

Required Maximum Frequency
to Compare with Experimental
HRIR (22 or 44 kHz), 200 frequencies

Introduction

Why Multipole Methods?

Multipole Methods

m Meshless for spherical
scatterers

m Fast

BE

m Needs Mesh
m Relatively Slow




Problem

Formulation

" S |
Formulation

Equations and Boundary Conditions

- Wave Equation

Helmholtz Equation __—
Viy +k*y = 0,

Impedance Boundary Conditions
0 .
(% + zapw) =0, p=1,..N

Sp

Field Decomposition @

W(P) = Win(r) + llf.scaz(l'),

Sommergeld Radiation Condition @
!ﬂi_g@lr(% - ik'lfscar> = 0.
r Incident e

°®




Multipole

Reexpansion
(T-Matrix) Method

* J T-Matrix Method

Scattered Field Decomposition

N
. 0 _
Wsear (1) = pr(r), ;ggr( ;;p — lkl,!/p> =0, p=1,.,N
p=1
Singular Basis Functions Hankel Functions

© 7 l i
wp(r) =D AP —ry),  SE(r) = ha (k)Y 6. 9).

=0 m=—n

Expansion Coefficients Spherical Harmonics
—_ {40 41 40 41 42 4-1 40 41 42 T
A= (A5,471,40,41, 452, 451,40,40, 42, ...},
Vector Form:
Wp(r) = AP - S(r—r).
™~
dot product




" JE T-Matrix Method

Incident Field Decomposition
and T-matrix for a Single Sphere

Yin(r) = Y EX (e )R (r - 1p) = E¥(r;) < R(r —r}).

=0 m=~n

Regular Basis Functions /Bessel Functions
R(r) = {Rp(r)}, RE(r) =ja(kr) 170, 9).

Analvtical Solution of the Problem:

m w(kay) + oy (ka inm
A}(Tp) =_k]!( p) .pJ( p) plin) (r},),
khy(kap) + iophy(kap)

n=01,2,... m=-—-n..,n

T-matrix
AP = TWEW — p=1 . N

"
Isosurfaces For Regular Basis Functions

Re{R}}(r)} = const




Isosurfaces For Singular Basis Functions
Red{Sy(r)} = const

(L10.03) (10.5) (10,10}

@He

[NI]

“0’8 ’

" JE T-Matrix Method

Solution of Multiple Scattering Problem

“Effective” krjcident Field

W) = ya(r) + v () =y (1) = wo(r) + v (r),

pO () = D AP .8(ry) = BY - R(ry). v () = B - Rry).
D+q

Coupled System of Equations:
AD — T@Ef;gZ,

6 B = Y (SR)(r} - r,)A?,
pP*q
@-D_> B9 = E(in)(rf )+ B(Q‘)‘\
efff q ?

(S|R)-Translation

/ \a _
N @ Scattered Wave g=1..,N Matrix




" JE T-Matrix Method

Reexpansions/Translations

Ag’gq) sR(r-r)), |r—ry <|r;—rp
yp(r) =

Ag?q) <S(r-ry), [r—rg > |ry; -

AE = (SR)(ry - AP, A% = (SIS)(r} - r))A®.

, (SIR)"(r =1 )R(r—1g),  r—1p| < rg =1y
S(r-r,) =

(SIS)T(ry —r))Sr =), r—rp >y —rp|

R(r-r,) = (RR)'(r, - r, )R(r —r}).

Two Spheres: Convergence with Respect to
Truncation Number

10

pEEeeoAH oo e e aaa

HRTF (dB)
iN
o

Two spheres,
6, = 60° ¢, = 0°,

-20 Finly = 2.3253.

'30 T T T T
0 10 20 30 40 50
Truncation Number




HRTF (dB)

= e .
T-matrix Method

Three Spheres Comparisons of
BEM & MultisphereHelmholtz

o0 BEM
9+ - MultisphereHelmholtz
o
1

30°

Three Spheres, ka; =3.0255.

-180 -90 0 90 180
Angle ¢, (deg)

BEM: 5184 triangular elements
MH: A, .= 9 (100 coefficients for each sphere)

trunc —

= e .
T-matrix Method

Conclusions on T-matrix Method

m We used recursive computation of translation matrices
(Chew, 1992; Gumerov & Duraiswami, 2001).

m In some cases speed up of computations 103-104 times
compared to BEM.

m But... Computational Complexity is O(N3P3)= O(N3 p®),
where P= p? is the total length of the vector of expansion
coefficients. Method is not suitable for large N and ka.

m Details can be found in our paper JASA 112(6), 2002,
2688-2701.




lterative Methods

= S Iterative Methods

Reflection Method &
Krylov Subspace Method (GMRES)

Reflection (Simple Iteration) Method:
(@ in ()
A = TO[E™(r}) + B |,

BY) = Y (SR)(r} - rp)AY,
P+q

ﬁﬂ<a g=1,...N.

General Formulation (used in GMRES)

[I - T@ Y (SR ~r}) ]A@ = TOE™ (x)).

pHq




= Iterative Methods

Convergence of Reflection
Iteration Method

1.E+00
Conwergence test
for iterative process
based on reflections
£ 3 =ph ki 3.0255
spheres, kz,= 3.
5 1.E-02 4 [case described in
E Gurnerov & Duraiswami (20027]
&
&)
=
= 1.E-04 -
2
|
"]
e}
<L
& 1.E-06 -
= /
Exponential Convergence
1 . E'OB T T T T T
0 s) 10 15 20 25 30
Iteration Number
" SN Iterative Methods

Conclusions on lterative Methods

m Both the Reflection Method (RM) and the GMRES converge well,
while the RM is simpler and faster;

m Some problems in convergence were found for larger ka and regular
spacing of the scatterers;

m In iterative methods fast translation algorithms can be used (we
used O(p?®)=0(P3?) fast translation based on sparse matrix
decomposition of translation operators). This cost potentially can be
reduced further (we are working on O(PlogP) methods).

m Complexity of Iterative Methods in this case O(N?N,, p3);

m Savings in complexity compared to straightforward T-matrix are O(p3
N/Nie,)

m For N~200, N;,,~20, p~10 (P~100) this yields of order 10* times
savings.




Fast Multipole Method

" S EMM
Some Facts on the Fast

Multipole Methods (FMM)

m Introduced by Rokhlin & Greengard (1987,1988) for computation
of 2D and 3D fields for Laplace Equation;

m Reduces complexity of matrix-vector product from O(N?) to O(N)
or O(NlogN) (depends on data structure);

m Hundreds of publications for various 1D, 2D, and 3D problems
(Laplace, Helmholtz, Maxwell, Yukawa Potentials, etc.);

m Application to acoustical scattering problems (Koc & Chew,
1998; JASA);

m  We taught the first in the country course on FMM fundamentals
& application at the University of Maryland (2002,2003);

m  Some technical reports are available online;

m A book on the FMM for the 3D Helmholtz equation submitted to
Academic Press.




Far and Near Fields

{g)(in
W) = wo(r) + yan() + Y, (1) = v () = yy(0) + w i (e,

v (r) = 3 AP .S(r) = NO . R(ry),
Ne|ghborhood . rpeieighborhood(xry) L L
(Near Field) y(r) = > AP.S(r,) = F9 . R(r,),

ry & Meighborhaod(ry )

@ = TR
A = TOEY,

N@ = Y (SR, - rp)AY),
rpehiighborhood(xry)

F@ = MLFMM(A®),
Eg%} — E(I'P’E)(l';,) + N _._F(’-?))
g=1,.., N

Far Field

" N
Max Level of Space Subdivision




* NS [EIM

Translations
w(y) = D D O DENY —X,) = 2 D Cl(x,)FI(y - X,,),

!
o0 n

C™(X42) = Z Z (EF)™ ()C™ (x41), t=Xs2 — X

n'=0 m'=—n'

EF=8SR n=01...., m=-n,..., n.

RIR SIS S|IR

'_
Problem:

m For the Helmholtz equation absolute and
uniform convergence can be achieved only for

p > ka. For large ka the FMM with constant p is
1 very expensive (comparable with straightforward methods);

1 inaccurate (since keeps much larger number of terms than
required, which causes numerical instabilities).

2a=3'2D
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Model of Truncation Number
Behavior for Fixed Error

In the multilevel FMM
we associate its own p,
pt with each level I:

Py =pi
“Breakdown level”

p* //l: kDO

kDi,, = Kb, Ibe = logy 5=

Py =A(D))*, 1< I

Py =AK12) S

Box size at level |

Complexity of Single Translation

Translation exponent

/

CostTrans(P;) = CP} = Cp#', 1= 2,..., L
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Spatially Uniform Data Distributions

<15
-15:
-15:

N] ~ S_ZN., llllﬂf\: -~ %l(}gN
=)

p/ ~ z_lkDo,)
. .
Noper ~ (kDO)Zv Z 2-2wigl — (kDO)zu Z (3-2v)
=2 =2

ComplexityFMM ~ (kDo) 203 ~ (kD) N1
ComplexityFMM ~ (kDo) lnax ~ (kDg)* logN
ComplexityFMM ~ (kDgy)*

;

Constant!

"
Complexity of the Optimized FMM
for Fixed kD, and Variable N

1E+12
1E+11 ¥
2 1E+10
o
I
L
_E— 1E+09
S
=
S 1E+08
(] _ f P
£ ! //”:,/’/ A e nu=1, Ib=2
2 1E+07 J’/’,,//’_/ /,,/‘ y=ax A nu=1.5, Ib=2
IS = nu=2, Ib=2
/// = =
1000000 ¢ {Fnu_l, |b_5
3D Spatially Uniform —+-nu=15, Ib=5
Random Distribution -8-nu=2, Ib=5
100000 T T
1000 10000 100000 1000000

Number of Sources
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Optimum Level for Low
Frequencies

100
N=M=1000000
3D Spatially Uniform 2
10 41 Random Distribution 2

-
-
o
3
X 1 D
g
c
=l
g 0.1 1 4
2
=3
S 001 - NIt
= 7 e PraEN
5 15 - ///
& 0.001 A 7 e
g Translation e .
5 //’ nu=1 Direct Summatior «-
Z 0.0001 - e )
0.00001 \ \ \ \
2 3 4 5 6 7

Max Level of Space Subdivision

Volume Element Methods

N. 3
N= ( kao) . kDo ~ NV
2
B} <1.5: ComplexityFMM ~ (kD)2 2@ 2V ~ (kDo) NY-23 ~ N
B} =1.5: ComplexityFMM ~ (kDo) Lyax ~ (kDg)? logN ~ NlogN

B} > 1.5 ComplexityFMM ~ (kDo) ~ N » NlogN.

D, = D, k/(21) wavelengths = N sources
Critical Translation Exponent!

N

S

0—0—0—0—0—

H_J

wavelength

computational domain
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What Happens if Truncation
Number is Constant for All Levels?

lmax lmax
Noper - (kDO)ZV 28[ — (kDO)mJZzSI - (kDO)szslmax - (kDO)ZVN - N1+21’/3.
=2 =2

B} <1.5: N < ComplexityFMM < N*
) =15 ComplexinFMM ~ N*
B} >1.5: ComplexiyFMM ~ N©*2B3 s N%

“Catastrophic Disaster of the FMM”

" N
Source Expansion Errors

0|0

Low frequencies:

Low Freguency Region

10-12

In[ eka(l —a71)*? ] |
p=- Ine o

High frequencies:

3
p=ka+ %(“\ In %) (ka)'?.
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Approximation of the Error

4 1/4
_ 1 1 1 (2 LV s T
p= {|: = In o~ o) + 1:| + [ka+ 5 (3111 o ) (ka)

O(p3) Translation Methods




" S
Rotation - Coaxial Translation
Decomposition (Complexity O(p3))

From the group theory follows that general translation can be reduced to

(FE)(t) = Rot(Q™" )(FIE) ., (NRot(Q), F.E = S,R.

10

kt=86
,-'vly=ax4
"
5
H
o
14 Full Matrix Translation f
z & g
o d y=bx
E A
= =
>
z ,
(@) DP'
0.1 D’U P
4
o
o
//;OKPO Rotational-Coaxial Translation
e Decomposition
0.01
10 100

Truncation Number, p

" JE
Sparse Matrix Decomposition

(RR)(t) = (S8)(t) = > %Di’ = Mt = A (kt,—iDy)

n=0

Matrix-vector
products with these
. matrices computed

As(kt,=De) = Y (2n + )i (kt)Pu(—iDy) | TECUSIVElY

n=0

(SR)(t) = As(kt,—1Dy)

As(t,~Dy) = D (20 + 1)i" ha(kt)P (=D ).

n=0

1 . ~m+1 ~m+1 1, -m—1 ; ~m—17,— ~m—17,m-1
DOy = o[ +it) (Coibl = Crl b ) =+ (e — ity ) (Cr b — ol ) ]

{
-+ TZ(aﬁ‘,‘C;‘E‘H S (GRS m=0,£1.£2,..., n=|m,jml+1,...
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It can be proved that for source summation
problems the truncation numbers can be

selected based on the above chart when

using translations with rectangularly

truncated matrices

SIS

SIR

RIR

" NS

o -+ LowFrequency Th;?ry—_' —

T o=17

L L I L
1] 2 4 ] g

1 I I 1 1
10 12 14 16 18 20
Trunca tioh Mumber, p

RIR, SIS

SIR




High Frequency FMM Error

10"

Max Absolute Error

' Ebn 3
| KD,=100 (ka=21.6)]
| ]

Truncation Mumber, p

Results of Computations




" S Resuls

Range of Parameters

m Number of Spheres: 1-10%

m ka: 0.1-10; kD,: 1-100;

m Random and regularly spaced grids of
spheres;

m Polydispersity: 0.5-1.5 (ratio to the mean
radius);

m VVolume fractions: 0.01-0.2;

S
Advantages and Defficiencies of Our
FMM Implementation

This implementation is not perfect, but works!

= O(NlogN) “On fly” computation of neighbor lists, using bit
interleaving;

Low memory: one can trade memory for speed;

m Rotation-Coaxial Translation Decomposition, Operations with
Multipole Expansion Coefficients;

For high frequencies some other methods (diagonal forms, asymptotic
methods) can be used; Some additional complexity: conversion to the
space of expansion coefficients;

m  No precomputation of translation and rotation matrices;
Low memory: one can trade memory for speed;

m For larger problem size the GMRES is more efficient than the
Reflection Method;
User can switch, but the GMRES can be used as default.
Krylov subspace dimensionalities usually low (of order 10-30).




Some Configurations

1000

640

343

Surface Potential Imaging
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Some Pictures

100 random spheres 1000 random spheres

USE the FMM for Spatial Imaging!

" Results

4 spheres (T-matrix straightforward)

Scatterers

ka=15.2

\ Incident Field Total Field Scattered Field

Imaging plane

\
Vector of the incident
plane wave




" S Results

100 random spheres (MLFMM)

ka=1.6 ka=2.8 ka=4.8

" S
1000 random spheres

ka=1

1 E+01
LR Reflection/MLFMM,

.
1 E+00 . 1000 Random Spheres,
. 7 .
. Plane Wave, ka =1
. .
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Aposteriory Error Control

2
@ _ Zmec(ymN

C |:Zm|wlgq(ym)|2

(1 — i, )[ b7 S () — b ST (r) ]

ntl nt1

Abc(ym)
Vg, (¥ )

(0 = max
€j; = max

)

#

12
c .
} : Abcﬁym)=aq(7ﬁ<ym)+raqw<me

%n VSH(r) =

J||—A

- %(nx + iy ) LS () = b S (n) | + mefa ST () — aSt L (r) ],

§

ntl Matl n—1 ntl

2

Magnitude of Surface Paotential
Ry
= 15
5
o
\:u
SR
£
E]
@
@ 05
=
E Errar in Boundary Conditions
2 Y
E| il " N o
N=80, ka=0.5, kD=5, py=10
05 L L . L .
i} 500 1000 1500 2000 2500

Surface Sampling Point Index

" A
Truncation and lteration Errors

Reflection Method

107 b Mo, =0 1

Average Error in Boundary Conditions




Results

Convergence for 100 spheres (MLFMM)

1.E+02

1.E+01 -

or

[

=
m
+
o
S

=
rp
o
—

1.E-02 1

Max Absolute Er

1.E-03 4

lterations with Reflection Method

3D Helmholtz Equation,
MLFMM
100 Spheres

2.8

1.E-04

10

15 20 25 30 35
lteration #

Convergence for Different N

1.E+00

L.E-OL - bk ¥

1.E-02 -

Max Absolute Error

1E-03 1

1.E-04

Periodically-Random Spatial Distribution
of Spheres of Equal Size
Volume Fraction = 0.2, ka=0.5

GMRES +FMM

——N=80, kD=5

—o— N=640, kD=11
-+ N=2160, kD=17
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—e—N=10000, kD=29
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0 10000
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GMRES vs Reflection

LE+01
LE+00 -
1E-01 {}
1.E-02 -

1.E-03 4

N=2160

Reflection
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Iteration Number
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CPU Time Per lteration

Dual Xeon 3.2GHz,
3.5 GB RAM,
25% resources utilized
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Overall Performance
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Computable Problems on
Desktop PC

FM

MLFMM

3

< Multipole Iterative
<5}

= Multipole

Straightforward
BEM
100 10t 102 103 10 10°

Number of Scatterers




Conclusions

m We developed, implemented, and tested the Multilevel Fast
Multipole Method for computation of multiple scattering
problems.

m Performance of the method depends on a number of controlling
parameters. At proper selection of these parameters fast and
accurate results can be achieved.

m Some convergence problems in iterative methods were
observed for short wave propagation in regularly spaced sphere
grids. This may be due to some internal resonances, which
should be investigated.

" A
Future work

m Development of faster translation algorithms,
covering higher frequencies;

m Extension for non-spherical scatterrers;

m Comparisons with continuum (averaging)
theories and theories of wave propagation in
random media;

m Computations of acoustic fields in disperse
systems (bubbly liquids, particulate systems);

m Comparisons with experimental data.






