Data Structures for Approximate Proximity and Range Searching

David M. Mount University of Maryland Joint work with: Sunil Arya (Hong Kong U. of Sci. and Tech) Charis Malamatos (Max Plank Inst.)

Introduction

Computational Geometry: The study of efficient algorithms and data structures for discrete geometric structures: finite point sets, polyhedra, spatial subdivisions.

Spatial Data Retrieval: Given a finite set of objects (points) preprocess these objects into a data structure that supports efficient processing of some given class of queries.

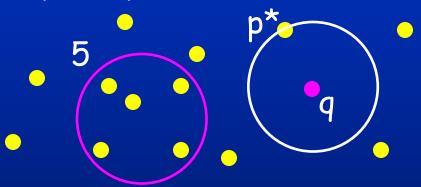
Efficiency: is measured in terms of the resources used as a function of the number of entities in the structure:

- Query time
- Space (for the data structure)
- Preprocessing time (usually of secondary importance)
- Update time (for dynamic applications)

1-Dimensional Example: Binary search and binary search trees. Improves O(n) brute-force search to O(log n) time.

Proximity Searching

Nearest Neighbor: Given a point set $S \subseteq R^d$ and $q \in R^d$, find the point $p^* \in S$ that is closest to q.



(Spherical) Range Queries: Given a query ball, report all the points that lie within, or the total weight of points within. Throughout we assume Euclidean distances.

Challenges

Curse of Dimensionality: Many methods for geometric retrieval problems have query times that grow exponentially in dimension (assuming a fixed amount of space).
Lower bounds: Many retrieval problems have known lower bounds, which imply that more efficient methods cannot exist.

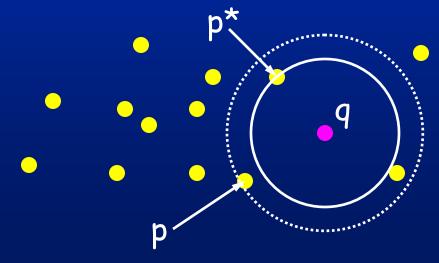
For example, given a parameter m, where $n \le m \le n^d$, if O(m) space is used, then spherical range queries cannot be answered in substantially less than $O(n/(m^{1/d}))$ time [Brönnimann, et. al, 1993].

Approximate Proximity Search

Approx Nearest Neighbor: Given $\varepsilon > 0$ and $q \in \mathbb{R}^d$, a point $p \in S$ is an ε -nearest neighbor of q if,

dist $(q,p) \le (1+\varepsilon)$ dist (q,p^*) ,

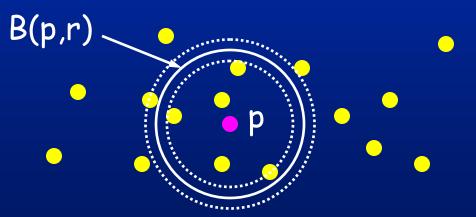
where $p^* \in S$ is the nearest neighbor of q.



Approximate Proximity Search

Approx Range Searching: Let B(q,r) denote the Euclidean ball of radius r centered at q. A set S' is an admissible solution to an ε-approximate range query if

 $S \cap B(p,r(1-\varepsilon)) \subseteq S' \subseteq S \cap B(p,r(1+\varepsilon))$



Goal: Return the weight of any admissible solution.

Exact/Approx NN Search

The best exact methods are based on data structures for range searching.

	Query Time	Space
Exact	log n	n ^{d/2}
AMNSW'98	(1/ε) ^d log n	n
Clarkson '97	$(1/\varepsilon)^{\frac{d-1}{2}}\log n$	d-1
Chan '98	$(1/\varepsilon)^2 \log n$	$(1/\varepsilon)^{\frac{1}{2}}$ nlog n

Any convex body in R^d can be ε -approximated by a polyhedron with $(1/\epsilon)^{(d-1)/2}$ facets [Dudley 74].

Our Results on ϵ -NN Search

Theorem: (AMM02) Given a point set S in R^d, and 0 < $\varepsilon \le \frac{1}{2}$, $2 \le \gamma \le 1/\varepsilon$, it is possible to build a data structure of space $O(n\gamma^{d-1}\log \gamma)$ that can answer ε - NN queries in $O(\log (n\gamma) + 1/(\varepsilon\gamma)^{(d-1)/2})$ time.

γ	Query Time	Space
1/ε	$\log n + \log (1/\epsilon)$	n/ε ^d
2	log n + $1/\epsilon^{(d-1)/2}$	n

Note: For low-space version, space is independent of ϵ , and query time is additive, not multiplicative.

Exact/Approx Range Search

Best exact approaches are based on cuttings, but results scale poorly with dimension.

	Query Time	Space
Exact	log n	n ^d /log ^d n
	n ^(1 - 1/d)	n
	log n + n/m ^{1/d}	m
Approx [AM'00]	log n + (1/ε) ^{d-1}	n

The approximate solution of AM'00 is based on kdtrees.

Our Results on ϵ -Range Search

Theorem: (AMM04) Given a point set S in R^d, and 0 < $\varepsilon \le \frac{1}{2}$, $2 \le \gamma \le 1/\varepsilon$, it is possible to build a data structure of space $O(n\gamma^d \log (1/\varepsilon))$ that can answer ε -range queries in $O(\log (n\gamma) + 1/(\varepsilon\gamma)^{d-1})$ time.

γ	Query Time	Space
1/ε	$\log n + \log (1/\epsilon)$	$(n/\epsilon^d) \log (1/\epsilon)$
2	log n + $1/\epsilon^{(d-1)}$	n log (1/ε)

Note: Can be used for answering approximate k-th nearest neighbor queries in similar time bounds.

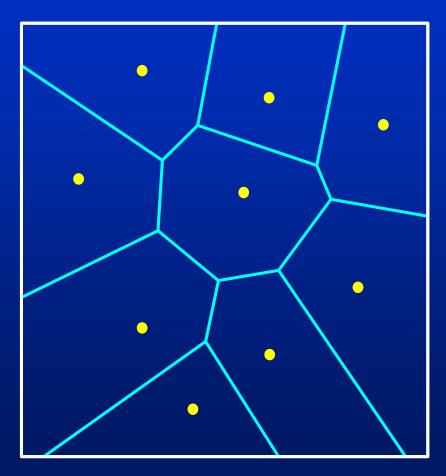
Remainder of the Talk

- General techniques used in efficient approximate retrieval.
- Approximate Voronoi Diagram (AVD)
- Applying AVDs to range searching
- Implementation (time permitting)

Voronoi Diagrams

Given a set S of n point sites in R^d. Voronoi diagram is a subdivision of space into regions according to which site is closest. Use point location to

answer NN queries.



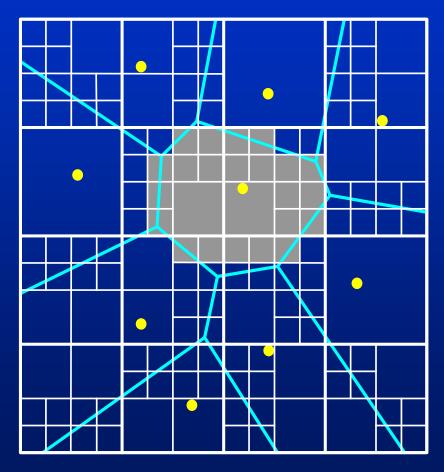
Voronoi Diagrams: Difficulties

High Complexity: In dimension d, it may be as high as $\Theta(n^{\lceil d/2 \rceil})$.

Computational Issues: Geometric degeneracies and topological consistency.
Point Location: Optimal solutions only in 2-d.
Question: Are there simpler/faster methods if we are willing to approximate?

Approx Voronoi Diagrams

 ϵ -AVD: (Har-Peled '01) Quadtree-like subdivision of space. Each cell stores a representative site, $r \in S$, such that r is an ε -NN of any point q in the cell. ϵ -NN \rightarrow pt location



Approx Voronoi Diagrams

Har-Peled '01: Size: $O\left(\frac{n}{\epsilon^{d}}(\log n)\left(\log \frac{n}{\epsilon}\right)\right).$

ε-NN Queries: Point location in a compressed quadtree in time

$$O\left(\log\frac{n}{\varepsilon}\right).$$

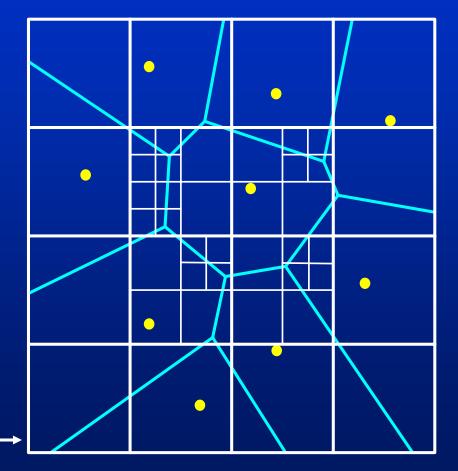
Arya, Malamatos'02: Multiple representatives

Multiple Representatives

Multi-representatives: Each cell is allowed up to $t \ge 1$ representatives.

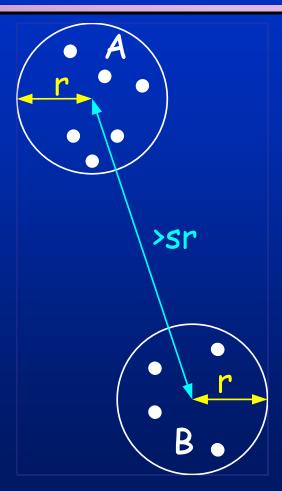
Tradeoff: cells vs. representatives. NN-Query: Pt. Loc. and distance comp.

t=2



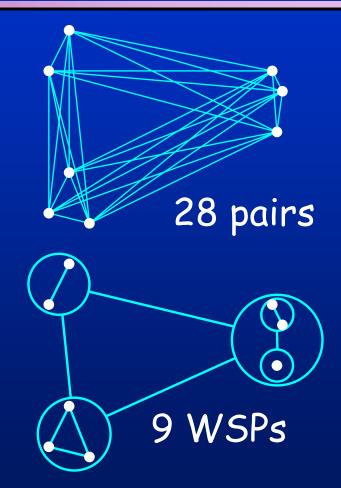
Basic Tools: WSPDs

Separation factor: s > 2. Two sets A and B are well-separated if they can be enclosed in spheres of radius r, whose centers are at distance least sr.



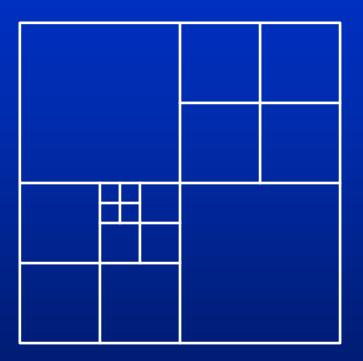
Basic Tools: WSPDs

Well-Separated Pair **Decomposition (WSPD)**: Given a set of n points and separation factor s, it is possible to represent all O(n²) pairs as O(s^dn) wellseparated pairs. (Callahan, Kosaraju '95)



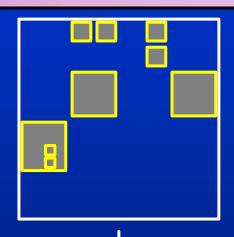
Basic Tools: BBD Trees

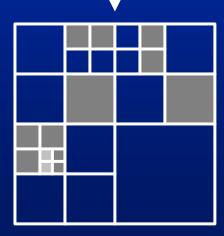
Quadtree Box: A box that can be obtained by repeatedly splitting the unit hypercube into 2^d identical boxes.



Basic Tools: BBD Trees

BBD Tree: Given a set of m quadtree boxes, we can build a BBD-tree of size O(m) and height O(log m) whose induced subdivision is a refinement of the box subdivision. (AMN+98)





Separation: Intuition

The greater the separation from a set of points, the fewer representatives are needed to guarantee that one is an ϵ -NN.

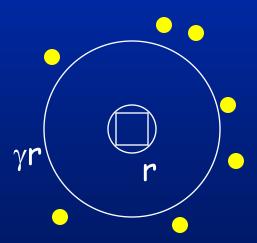
Disjoint & Concentric Balls

Disjoint Ball Lemma: Given disjoint balls of radii r_1 and r_2 separated by L, the number of representatives needed is $\frac{d-1}{(r_1r_2/(\epsilon L^2))^2}$

Concentric Ball Lemma: Given concentric balls of radii r and γr , the number of representatives needed is d-1

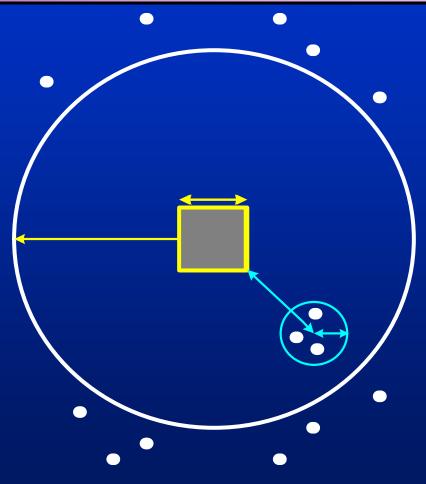
$$1/(\epsilon\gamma)^{\frac{d-1}{2}}$$

 r_1 r_2



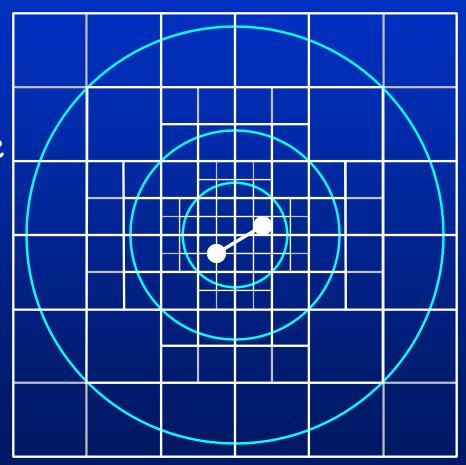
Separation: Goal

Low- γ : Assume γ =2. Goal: Subdivide space into O(n) cells. For each cell of size s, all sites within distance 4s can be enclosed within a ball whose factor-2 expansion does not intersect the cell.



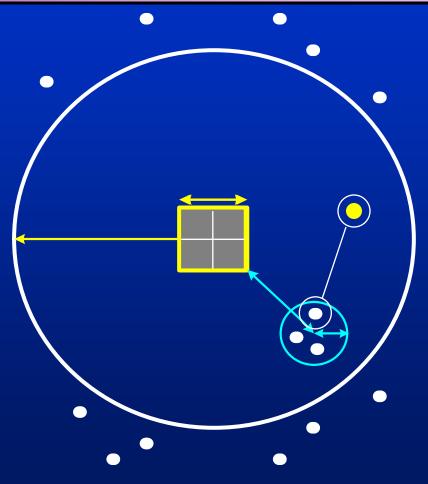
Construction

Create a WSPD with separation 4. For each WSP, create a set of quadtree boxes whose sizes depend on the dist from this WSP. Build a BBD tree for these boxes.



Achieving Separation

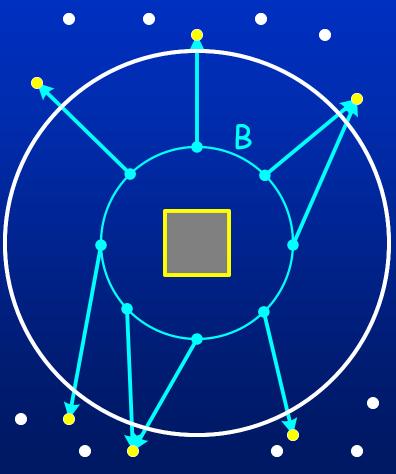
Why does this work? Suppose that the points within the 4s expansion are not contained within a separated ball. Then there would be a well-separated pair, which would force the cell to be split.



Selecting Representatives

Two-Step Approach:

- Construct a set of 1/ε^{(d-1)/2} points uniform on an intermediate sphere B.
- Reps are the nearest neighbors of these points.

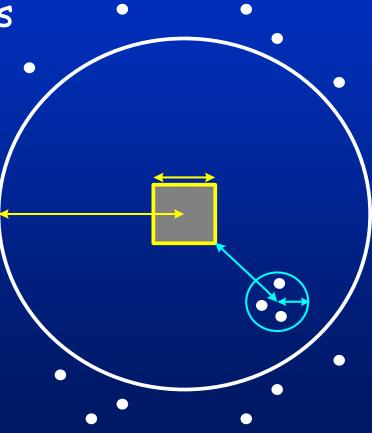


Space Reduction: Sampling

Recall that representatives come from two sources: <u>- From outside large</u> ball

- From inner cluster
- No points exist in the remaining "no-man's land"

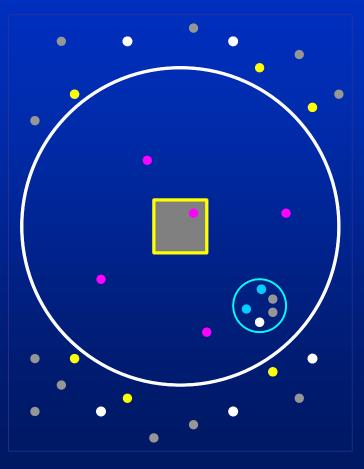
Idea: Allow more points into no-man's land, and make them all reps.



Space Reduction: Sampling

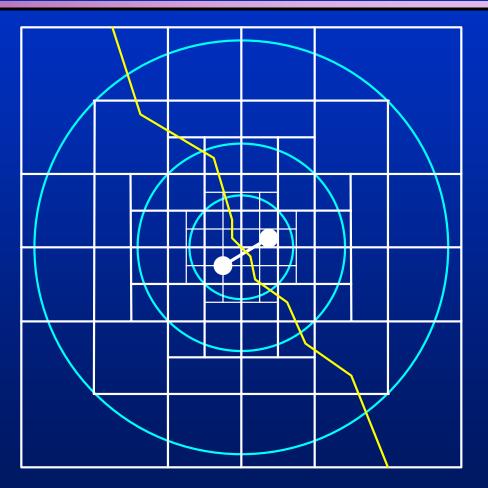
Intuition: Use a sample S' of $n\epsilon^{(d-1)/2}$ points in the basic AVD construction. We expect $O(1/\epsilon^{(d-1)/2})$ points of S to lie in noman's land.

Representatives: From outer, inner cluster, and no-man's land.



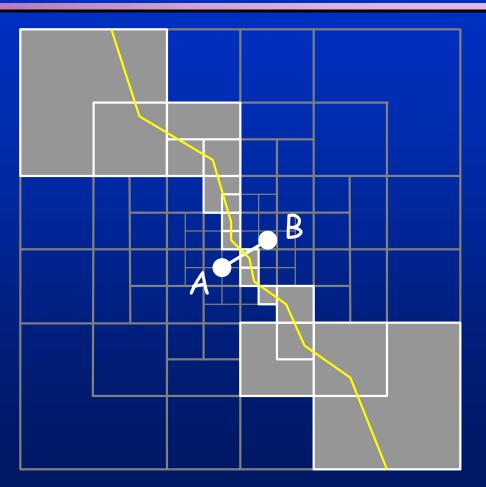
Bisector-Sensitivity

Recall that the basic AVD construction creates quadtree boxes uniformly around each WSP. Idea: Concentrate boxes along bisector.



Bisector-Sensitivity

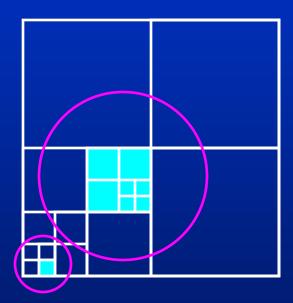
Bisector Sensitive *Construction:* For each WSP (*A*,*B*), create quadtree boxes as before, but only for those that intersect the *A*-*B* bisector.



AVDs and Range Searching

Adaptation: AVDs can be adapted to perform range searching. Rather than using just the leaf nodes, internal nodes are used as well for answering queries, where the query size is roughly γ times the size of the associated cell. Auxiliary information: Each internal node stores information about surrounding region in order to answer

queries.

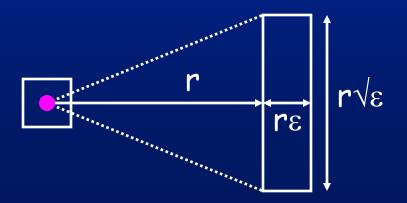


Polar kd-trees

With spherical ranges there are two sources of approximation error:

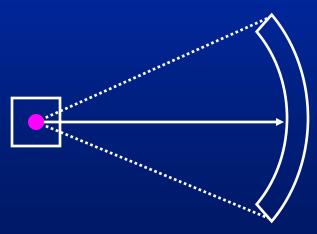
- radial distance from center
- angular error

It is possible to tolerate greater angular error than radial error.



Polar kd-trees

Polar kd-tree: Build a collection of hierarchical spatial subdivisions, based on a polar representation of points relative to some local center.



Conclusions

ε-AVD: A spatial subdivision in which ε-NN queries reduce to point location.
 Space Efficiency: Through deterministic sampling and bisector sensitivity.

- $O(\log n + 1/\epsilon^{(d-1)/2})$ time
- O(n) space

AVDs for Other Problems: AVDs for other objects? AVD-like structures for interpolation?

Approximating Voronoi Cells: Some initial results by Arya and Vigneron.

Thank you!

Implementation?

The WSPD construction is not very practical:

- Large constants.
- Bottom-up construction (must know all the AVDs to construct any part).
- Further study is warranted.

Partial construction: Given the size of the AVD, it is useful to build/rebuild portions of the structure. Need for top-down construction.

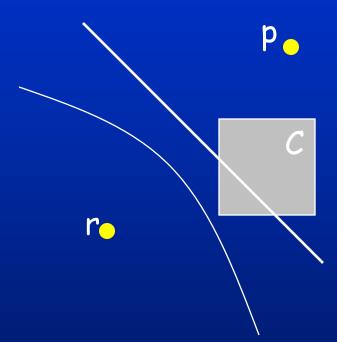
Top-Down Construction

Input: Point set S. Error factor ε, and number of representatives t.

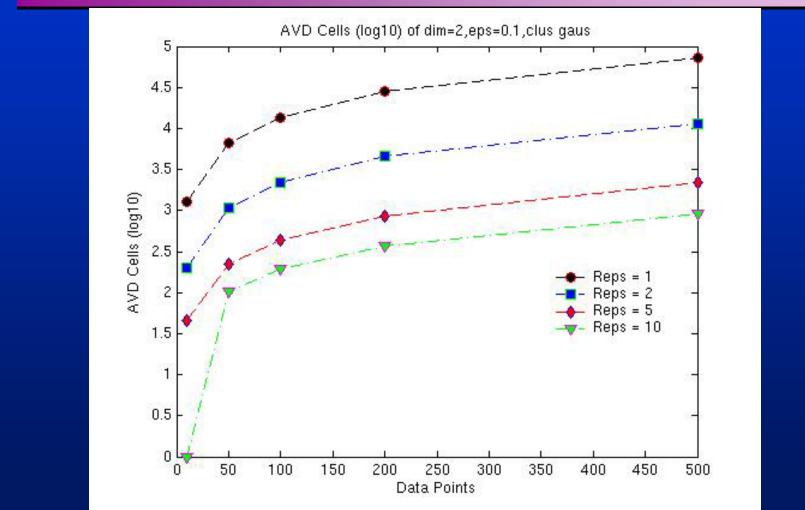
- Basis: Start with bounding hypercube as cell and all points of S as candidate nearest neighbors.
- **Recursive step:** Given a quadtree cell C, and a collection of candidate nearest neighbors U.
 - Prune from U all points that cannot be an ϵ -NN to any point of C.
 - If $|U| \le t$, then done. Otherwise, split C and recurse.

How to Prune?

Let p in U be the closest candidate to the center of the cell. Let r be some other candidate. If for all x in C, if $dist(x,p) \le (1+\varepsilon)dist(x,r)$ then prune r. This can be solved numerically.



Results: Cells vs n,t



Results: cells vs e

