NUFFT, Discontinuous Fast Fourier Transform, and Some Applications

Qing Huo Liu Department of Electrical and Computer Engineering Duke University Durham, NC 27708

Outline

- Motivation
- NUFFT Algorithms
- FFT for Discontinuous Functions
- Applications in Solution of Wave Equations, Sensing, and Imaging
- Summary

MOTIVATION

- Develop a fast method to calculate Discrete Fourier Transform (DFT) of nonuniformly sampled data
 - Regular FFT algorithms do not apply
 - Straightforward DFT requires $O(N^2)$ for the forward transform, and $O(N^3)$ for the inverse transform
- Develop a fast Fourier transform algorithm for discontinuous functions
 - Regular DFT and FFT has slow convergence of O(1/N)
 - The "discontinuous" FFT (DFFT) method has exponential convergence while requiring only $O(N \log N)$ operations
- Engineering applications of the NUFFT and DFFT algorithms SAR, GPR, CT, MRI

Outline

- Motivation
- NUFFT Algorithms
- FFT for Discontinuous Functions
- Applications in Solution of Wave Equations, Sensing, and Imaging
- Summary

NUFFT Algorithms

• Regular FFT Algorithms: A fast method for DFT

- First proposed by Cooley and Tukey (1965)
- Direct calculation of Discrete Fourier Transform

 $f_j = \sum_{k=-N/2}^{N/2-1} \alpha_k e^{i2\pi kj}$ for $j = -N/2, \cdots, N/2 - 1$

requires N^2 arithmetic operations.

- In FFT, number of arithmetic operations $0.5N \log_2 N$.

• Limitation of Regular FFT Algorithms

- FFT requires uniformly spaced periodic data
Periodic

Uniformly Sampled Points for FFT

• The Nonuniform Discrete Fourier Transform

 $f_j = F(\alpha)_j = \sum_{k=-N/2}^{N/2-1} \alpha_k e^{it_k \cdot \omega_j}$ for $j = -N/2, \cdots, N/2 - 1,$

- Frequency samples $\omega = \{\omega_{-N/2}, \cdots, \omega_{N/2-1}\},\ \omega_j = 2\pi j/N \in [-\pi, \pi] \text{ are uniform}$

- Time samples $t = \{t_{-N/2}, \cdots, t_{N/2-1}\}, t_k \in [-N/2, N/2]$ are nonuniform
- Regular FFT does not apply
- Nonuniform data is common in applications
- Direct calculation is very expensive
- NUFFT algorithms are fast methods with $O(mN \log_2 N)$ arithmetic operations

PREVIOUS METHODS

• Dutt & Rokhlin's Method (1993)

- Interpolation involving a Gaussian function

$$F(\omega) = e^{-b\omega^2} e^{i\omega\tau}$$
 for $\omega \in [-\pi,\pi]$

(where b > 1/2 and τ is a real number) by a small number of equally spaced points on the unit circle.

• Beylkin's Method (1995)

- Interpolation using multiresolution analysis (MRA)

- Liu & Nguyen—Least Square Interpolation (1997, 1998)
 - Optimal in the least-square sense
 - A new class of matrices: Regular Fourier Matrices

- Highly accurate and with the same complexity

Nonuniform Fast Fourier Transforms (NUFFT)

• Fast Algorithm for Summation

$$f_j = F(\alpha)_j = \sum_{k=-N/2}^{N/2-1} \alpha_k e^{it_k \cdot \omega_j}$$
 for $j = -N/2, \cdots, N/2 - 1,$

- Frequency samples $\omega = \{\omega_{-N/2}, \cdots, \omega_{N/2-1}\},\ \omega_j = 2\pi j/N \in [-\pi, \pi] \text{ are uniform}$

- Time samples $t = \{t_{-N/2}, \cdots, t_{N/2-1}\}, t_k \in [-N/2, N/2]$ are nonuniform
- Our NUFFT Algorithm: Introduce a finite sequence

$$S(j) = s_j e^{i2\pi\tau j/N} \equiv s_j z^{jm\tau} \quad \text{for} \quad j = -N/2, \cdots, N/2 - 1$$

where the "accuracy factors" $0 < s_j \le 1$ are chosen to minimize the approximation error. Use least-square to approximate this sequence by a small number of uniform points.

LEAST SQUARE INTERPOLATION Interpolation of Unequally Spaced Points by Uniform Points on a Unit Circle • Find the least square solution x_{ℓ} of $s_j z^{jm\tau} = \sum^{+q/2} x_\ell(\tau) z^{j([m\tau]+\ell)}$ $\ell = -q/2$ where $z = e^{i2\pi/mN}$. The oversampling factor $m \ge 2$.

- We use (q+1) uniform points to interpolate one point
 - Number of unknowns (q + 1)
 - Number of equations N
- Since $(q+1) \ll N$, this is an over-determined system

$$Ax(\tau) = v(\tau)$$
$$A_{j\ell} = z^{j(\ell + [m\tau])}, \quad v_j(\tau) = s_j z^{jm\tau}$$

- Note A_{jk} is a function of τ
- Least square solution

$$x(\tau) = F^{-1}a(\tau)$$
$$F = A^{\dagger}(\tau)A(\tau), \quad a(\tau) = A^{\dagger}(\tau) \cdot v(\tau)$$

• Is F a function of τ ?

• Matrix $F = A^{\dagger}(\tau)A(\tau) =$

- The regular Fourier matrices F(m, N, q)
 - It has a remarkable property:

F(m, N, q) is **independent** of τ .

• Therefore, for all time sample points, F only need to be calculated once.

• Vector a is, for $\ell = -q/2, \cdots, q/2$

$$a_{\ell}(\tau) = \sum_{j=-N/2}^{N/2-1} s_j e^{i\frac{2\pi}{Nm}(\{m\tau\}-\ell)j}$$

- In general, vector *a* has to be evaluated by the above series.
 - For some special accuracy factors s_j , closed form
 - is possible

Accuracy Factors

• Accuracy factors s_j are needed in

$$a_{\ell}(\tau) = \sum_{j=-N/2}^{N/2-1} s_j e^{i\frac{2\pi}{Nm}(\{m\tau\}-\ell)j}$$

• Three Different Accuracy Factors Are Used

(1) Gaussian accuracy factors

$$s_j = e^{-b(\frac{2\pi j}{Nm})^2}$$

Then a_ℓ has to be found by the series.

(2) Cosine accuracy factors

$$s_j = \cos\frac{\pi j}{Nm}$$

then $a_{\ell}(\tau)$ can be found in closed form

$$a_{\ell}(\tau) = -i \sum_{\gamma = -1,1} \frac{\sin[\frac{\pi}{m}(\{m\tau\} - \ell + \gamma/2)]}{1 - e^{i\frac{2\pi}{Nm}(\{m\tau\} - \ell + \gamma/2)}}$$

(3) Trivial accuracy factors

 $s_j = 1$

then $a_{\ell}(\tau)$ can also be found in closed form

$$a_{\ell}(\tau) == \frac{e^{-i\frac{\pi}{m}(\{mc\}+q/2-k)} - e^{i\frac{\pi}{m}(\{mc\}+q/2-k)}}{e^{i\frac{2\pi}{Nm}(\{mc\}+q/2-k)}}$$

• Cosine accuracy factors are more efficient and accurate.

PROCEDURES OF THE NUFFT ALGORITHM

- **Preprocessing: Compute** $x_{\ell}(t_k)$ for all ℓ and k
- Interpolation: Calculate Fourier coefficients

$$\eta_n = \sum_{\ell,k,[mt_k]+\ell=n} \alpha_k \cdot x_\ell(t_k)$$

• Regular FFT: Use uniform FFT to evaluate

$$T_j = \sum_{n=-mN/2}^{mN/2-1} \eta_n \cdot e^{2\pi i n j/mN}$$

• Scaling: Scale the values to arrive at the approximated NUFFT

$$\tilde{f}_j = T_j \cdot s_j^{-1}$$

• The number of arithmetic operations is $O(mN \log_2 N)$, where $m \ll N$. (Usually m = 2 and q = 8.)

Accuracy of the NUFFT Algorithm

• L_2 and L_∞ Errors

$$E_2 = \sqrt{\sum_{j=-N/2}^{N/2-1} |\tilde{f}_j - f_j|^2 / \sum_{j=0}^{N-1} |f_j|^2}.$$

$$E_{\infty} = \max_{-N/2 \le j \le N/2 - 1} |\tilde{f}_j - f_j| / \sum_{j = -N/2}^{N/2 - 1} |\alpha_j|$$

• For following tests

- The time sample points t_k and the data α_k are obtained by a pseudorandom number generator with large variations

E_2 and E_∞ as Functions of q (N = 64)

Observations

• NUFFT is optimal in the least square sense.

Our algorithm always obtains a higher accuracy than the previous algorithm, while the number of operations is comparable.

- Cosine accuracy factors are more efficient than Gaussian accuracy factors since a(τ) can be found in closed form.
- Cosine accuracy factors are more accurate than Gaussian accuracy factors for q ≤ 8.

(a) Spatial distribution of transient EM field near a conductive dielectric slab.
(b) Real and (c) imaginary parts of the (spatial) spectrum.
(d) Absolute errors of NUFFT.

Relative number of operations as a function of N. Both input data and the locations of the sampling points are random. The dashed curve is the theoretically predicted curve $O(N \log_2 N)$ passing through the last point.

Summary of NUFFT

- Direct evaluation of nonuniform DFT is expensive, requiring $O(N^2)$ arithmetic operations.
- Through least-square interpolation, we discover a new class of matrices, the **Regular Fourier Matrices** F(m, N, q).
- The NUFFT algorithm proposed is accurate as it has a least-square error in the interpolation of the basis.
- Other related forward and inverse NUDFTs can be also calculated by the NUFFT.
- The NUFFT algorithm is a fundamental technique useful to many other applications.

Outline

- Motivation
- NUFFT Algorithms
- FFT for Discontinuous Functions
- Applications in Solution of Wave Equations, Sensing, and Imaging
- Summary

FFT for Discontinuous Functions: Motivation

- For smooth periodic functions, the FFT provides a high accuracy.
- FFT results have greatly reduced accuracy for discontinuous functions.
- Examples: Electromagnetic field in a discontinuous medium.
- The source of inaccuracy

-Trapezoidal rule in the Fourier integration. -Error is proportional to $O(\frac{1}{N})$

- Methods for FFT of discontinuous functions (Fan/Liu, 2001; 2004)

-Sorets (1995) treats piecewise constant functions

-This work is an extension to piecewise smooth functions

Formulation of DFFT

• Fourier Transform of f(x) (a piecewise smooth function)

$$\hat{f}(n) = \int_{0}^{1} f(x)e^{-i2\pi nx}dx, \quad -\frac{N}{2} < n \le \frac{N}{2} - 1$$

• Integration in L sections

$$\hat{f}(n) = \sum_{l=1}^{L} \int_{x_{l-1}}^{x_l} f(x) e^{-i2\pi nx} \, dx$$

• By change of variables, each section can be evaluated by **Gaussian** Legendre quadrature

$$\int_{-1}^{1} y(t) dt \cong \sum_{k=1}^{q} y(t_k) \,\omega_k$$

• Summation

$$\hat{f}(n) \cong \sum_{l=1}^{L} b^l \sum_{k=1}^{q} \omega_k f(t_k^l) e^{-i2\pi n t_k^l}$$

• However, here $\{t_k^l\}$ are nonuniform.

• Lagrange interpolation to a uniform grid

$$g(x) = \sum_{m=1}^{p} g(x_m) \,\delta_m(x), \qquad \delta_m(x) = \prod_{\substack{n=1\\n \neq m}}^{p} \frac{x - x_n}{x_m - x_n}$$

• Double interpolation

$$\hat{f}(n) = \sum_{l=1}^{L} b^{l} \sum_{k=1}^{q} \omega_{k}^{l} \left(\sum_{m_{1}=1}^{p_{1}} f(t_{m_{1}}^{l}) \delta_{m_{1}}(t_{k}^{l}) \right) \sum_{m=1}^{p} e^{-i2\pi n t_{m}^{l}} \delta_{m}(t_{k}^{l})$$

• Then it can be evaluated by the standard FFT

$$\hat{f}(n) = \sum_{m=1}^{\nu N} g_m \, e^{-i2\pi n x_m}$$

$$g_m = \sum_{l=1}^{L} b^l \sum_{k=1}^{q} \left(\sum_{m_1=1}^{p_1} f(t_{m_1}^l) \delta_{m_1}(t_k^l) \right) \, \omega_k^l \, \delta_m(t_k^l)$$

 ν is sampling factor ($\nu=2$ in our calculation)

• Advantages of double interpolation procedure

- Nonuniform FFT;
- Allows a lower order interpolation for the slowly varying function f(x);
- Allows other efficient algorithms for interpolation of f(x), if needed.

Implementation and complexity of the DFFT algorithm

- Steps:
 - Initialization of $\delta_{m_1}(t_k^l)$ and $\delta_m(t_k^l)$. (This preprocessing is needed only once). Complexity $O(Np^2)$.
 - Calculation of g_m . The complexity is O(Np).
 - Calculation of $\hat{f}(n)$ in (9) by a standard FFT. The complexity is $O(\nu N \log N)$.
- The total complexity is $O(Np + \nu N \log N)$ for last two steps. The preprocessing need be done only once.

Numerical Examples of DFFT Example 1: Triangle Function

Table 1. Errors and Run Times for Example 1(Double Precision)

Ν	Errors (E_{∞})		Timings (ms)			
	This paper	Direct	Init.	Eval.	FFT	Direct
64	1.130e-13	9.683e-03	51.0	1.30	0.51	0.13
128	1.120e-13	4.824e-03	102.	2.60	1.11	0.26
256	1.130e-13	2.408e-03	203.	5.21	2.47	0.58
512	1.120e-13	1.203e-03	406.	10.5	5.89	1.24

Table 2. Errors and Run Times for Example 2

(Double Precision)

N	Errors (E_{∞})		Timings (ms)			
	This paper	Direct	Init.	Eval.	FFT	Direct
512	1.471e-11	5.820e-02	158.	4.28	5.81	1.25
1024	1.080e-12	2.920e-02	333.	8.41	13.0	2.67

Example 3: 2-D Function

 $f(x,y) = f_1(x) f_2(y)$

Table 3. Errors for the 2-D Problem in Example 3

(Double Precision)

$N \times M$	Errors (E_{∞})			
	This paper	Direct		
128×512	2.916e-12	1.697e-03		
256×1024	2.700e-13	8.511e-04		

Summary of the DFFT

- A fast DFFT algorithm has been developed for the evaluation of Fourier transform of piecewise smooth functions.
- DFFT can achieve NUFFT: It is applicable to both uniformly and nonuniformly sampled data.
- The complexity of algorithm is $O(Np + \nu N \log N)$ plus $O(Np^2)$ for precalculation.
- Numerical results demonstrate the efficiency and accuracy.

Outline

- Motivation
- NUFFT Algorithms
- FFT for Discontinuous Functions
- Applications in Solution of Wave Equations, Sensing, and Imaging
- Summary

Application 1: Integral Equation Solution by the CGFFT Method

- **1-D EM scattering problem** Plane wave scattering from a slab of finite width
- Integral equation

$$E^{inc}(x) = E(x) + \int_{0}^{l} G(x - x')J(x') \, dx$$

- $J(x) = k_0^2 [\epsilon_r(x) 1] E(x)$ is the unknown equivalent current
- G(x x') is the 1-D Green's function in free space
- Convolution integral is evaluated by Fourier transform

 $E^{inc}(x) = E(x) + \mathcal{F}^{-1} \left\{ \mathcal{F} \{ G(x) \} \mathcal{F} \{ J(x) \} \right\}$

 \mathcal{F} and \mathcal{F}^{-1} denote the forward and inverse Fourier transform.

Comparison of CGFFT algorithms for dielectric slab with a low ϵ_r contrast. $\epsilon_r = 2, f = 2.75$ GHz.

• Sampling density: 10 PPW

Same as Example 1 except f = 5.5 GHz.

• Sampling density: 5 PPW

Same as Example 1 except with a higher contrast, $\epsilon_r = 8$.

• Sampling density: 5 PPW

Application 2: Ground Penetrating Radar Using NUFFT

Application 3: MRI Image Reconstruction

Conventional and NUFFT reconstructed results

Error in the conventional method and in the NUFFT

NUFFT: 1.49%, Interpolation: 12.25%

Summary and Conclusions

- NUFFT algorithms with O(N log N) operations have been developed in recent years and received considerable attention.
 We presented a simple method based on least-square interpolation of the basis, inspired by the original work by Dutt and Rokhlin.
- A fast DFFT algorithm has been developed for the Fourier transform for discontinuous functions with $O(Np + \nu N \log N)$ operations.
- Both NUFFT and DFFT algorithms have many applications:
 - Numerical solution of wave equations
 - Ground penetrating radar and synthetic aperture radar processing
 - CT and MRI image reconstruction

Acknowledgment Collaborators:

G. Fan, N. Nguyen, N. Pitsianis, J. Song, X. Sun, X. Tang