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MOTIVATION

• Develop a fast method to calculate Discrete Fourier Transform
(DFT) of nonuniformly sampled data

– Regular FFT algorithms do not apply

– Straightforward DFT requires O(N 2) for the forward transform,
and O(N3) for the inverse transform

• Develop a fast Fourier transform algorithm for discontinuous
functions

– Regular DFT and FFT has slow convergence of O(1/N)

– The “discontinuous” FFT (DFFT) method has exponential
convergence while requiring only O(N log N) operations

• Engineering applications of the NUFFT and DFFT algorithms

SAR, GPR, CT, MRI
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NUFFT Algorithms

• Regular FFT Algorithms: A fast method for DFT

- First proposed by Cooley and Tukey (1965)

- Direct calculation of Discrete Fourier Transform

fj =

N/2−1
∑

k=−N/2

αkei2πkj for j = −N/2, · · · , N/2 − 1

requires N2 arithmetic operations.

- In FFT, number of arithmetic operations 0.5N log2 N .

• Limitation of Regular FFT Algorithms

- FFT requires uniformly spaced periodic data
Periodic

Uniformly Sampled Points for FFT
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• The Nonuniform Discrete Fourier Transform

fj = F (α)j =

N/2−1
∑

k=−N/2

αkeitk·ωj for j = −N/2, · · · , N/2 − 1,

- Frequency samples ω = {ω−N/2, · · · , ωN/2−1},

ωj = 2πj/N ∈ [−π, π] are uniform

- Time samples t = {t−N/2, · · · , tN/2−1}, tk ∈ [−N/2, N/2]

are nonuniform

- Regular FFT does not apply

- Nonuniform data is common in applications

- Direct calculation is very expensive

• NUFFT algorithms are fast methods with O(mN log2 N)

arithmetic operations
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PREVIOUS METHODS

• Dutt & Rokhlin’s Method (1993)

- Interpolation involving a Gaussian function

F (ω) = e−bω2

eiωτ for ω ∈ [−π, π]

(where b > 1/2 and τ is a real number) by a small number of equally

spaced points on the unit circle.

• Beylkin’s Method (1995)

- Interpolation using multiresolution analysis (MRA)

• Liu & Nguyen—Least Square Interpolation (1997, 1998)

- Optimal in the least-square sense

- A new class of matrices: Regular Fourier Matrices

- Highly accurate and with the same complexity
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Nonuniform Fast Fourier Transforms (NUFFT)

• Fast Algorithm for Summation

fj = F (α)j =

N/2−1
∑

k=−N/2

αkeitk·ωj for j = −N/2, · · · , N/2 − 1,

- Frequency samples ω = {ω−N/2, · · · , ωN/2−1},

ωj = 2πj/N ∈ [−π, π] are uniform

- Time samples t = {t−N/2, · · · , tN/2−1}, tk ∈ [−N/2, N/2]

are nonuniform

• Our NUFFT Algorithm: - Introduce a finite sequence

S(j) = sje
i2πτj/N ≡ sjz

jmτ for j = −N/2, · · · , N/2 − 1

where the “accuracy factors” 0 < sj ≤ 1 are chosen to minimize the
approximation error. Use least-square to approximate this sequence
by a small number of uniform points.
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LEAST SQUARE INTERPOLATION

Uniform Points on a Unit Circle

Interpolation of Unequally Spaced Points by

• Find the least square solution x` of

sjz
jmτ =

+q/2
∑

`=−q/2

x`(τ)zj([mτ ]+`)

where z = ei2π/mN . The oversampling factor m ≥ 2.
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• We use (q + 1) uniform points to interpolate one point

- Number of unknowns (q + 1)

- Number of equations N

• Since (q + 1) << N , this is an over-determined system

Ax(τ) = v(τ)

Aj` = zj(`+[mτ ]), vj(τ) = sjz
jmτ

• Note Ajk is a function of τ

• Least square solution

x(τ) = F−1a(τ)

F = A†(τ)A(τ), a(τ) = A†(τ) · v(τ)

• Is F a function of τ ?
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• Matrix F = A†(τ)A(τ) =
















N z−N/2−zN/2

1−z · · · z−qN/2−zqN/2

1−zq

zN/2−z−N/2

1−z−1 N · · · z−(q−1)N/2−z(q−1)N/2

1−zq−1

...
...

...
...

zqN/2−z−qN/2

1−z−q
z(q−1)N/2−z−(q−1)N/2

1−z−(q−1) · · · N

















• The regular Fourier matrices F (m, N, q)

- It has a remarkable property:

F (m, N, q) is independent of τ .

• Therefore, for all time sample points, F only need to be
calculated once.
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• Vector a is, for ` = −q/2, · · · , q/2

a`(τ) =

N/2−1
∑

j=−N/2

sje
i 2π

Nm ({mτ}−`)j

• In general, vector a has to be evaluated by the above series.

- For some special accuracy factors sj , closed form

is possible
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Accuracy Factors
• Accuracy factors sj are needed in

a`(τ) =

N/2−1
∑

j=−N/2

sje
i 2π

Nm ({mτ}−`)j

• Three Different Accuracy Factors Are Used

(1) Gaussian accuracy factors

sj = e−b( 2πj
Nm )2

Then a` has to be found by the series.

(2) Cosine accuracy factors

sj = cos
πj

Nm
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then a`(τ) can be found in closed form

a`(τ) = −i
∑

γ=−1,1

sin[ π
m ({mτ} − ` + γ/2)]

1 − ei 2π
Nm ({mτ}−`+γ/2)

(3) Trivial accuracy factors

sj = 1

then a`(τ) can also be found in closed form

a`(τ) ==
e−i π

m ({mc}+q/2−k) − ei π
m ({mc}+q/2−k)

ei 2π
Nm ({mc}+q/2−k)

• Cosine accuracy factors are more efficient and accurate.
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PROCEDURES OF THE NUFFT ALGORITHM

• Preprocessing: Compute x`(tk) for all ` and k

• Interpolation: Calculate Fourier coefficients

ηn =
∑

`,k,[mtk]+`=n

αk · x`(tk)

• Regular FFT: Use uniform FFT to evaluate

Tj =

mN/2−1
∑

n=−mN/2

ηn · e2πinj/mN

• Scaling: Scale the values to arrive at the approximated NUFFT

f̃j = Tj · s
−1
j

• The number of arithmetic operations is O(mN log2 N), where
m � N . (Usually m = 2 and q = 8.)
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Accuracy of the NUFFT Algorithm
• L2 and L∞ Errors

E2 =

√

√

√

√

√

N/2−1
∑

j=−N/2

|f̃j − fj |2
/

N−1
∑

j=0

|fj |2.

E∞ = max
−N/2≤j≤N/2−1

|f̃j − fj |
/

N/2−1
∑

j=−N/2

|αj |

• For following tests

- The time sample points tk and the data αk are obtained by a

pseudorandom number generator with large variations
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E2 and E∞ as Functions of N (q = 8)
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E2 and E∞ as Functions of q (N = 64)
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Observations

• NUFFT is optimal in the least square sense.
Our algorithm always obtains a higher accuracy than the previous

algorithm, while the number of operations is comparable.

• Cosine accuracy factors are more efficient than Gaussian accuracy

factors since a(τ) can be found in closed form.

• Cosine accuracy factors are more accurate than Gaussian accuracy

factors for q ≤ 8.
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EM Field Near A Sharp Discontinuity

−20 0 20

0

0.2

0.4

0.6

0.8

1

Normalized Location

N
or

m
al

iz
ed

 E
x

(a)

0 20 40 60
−10

0

10

20

30

Spatial Frequency Index

R
ea

l P
ar

t

Direct

NUFFT

(b)

0 20 40 60
−20

−10

0

10

20
Direct

NUFFT

Spatial Frequency Index

Im
ag

in
ar

y 
P

ar
t

(c)

0 20 40 60

10
−5

10
−4

10
−3

NUFFT

DR

Spatial Frequency Index

A
bs

ol
ut

e 
E

rr
or

(d)

(a) Spatial distribution of transient EM field near a conductive dielectric

slab. (b) Real and (c) imaginary parts of the (spatial) spectrum.

(d) Absolute errors of NUFFT.
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Computation Complexity
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Relative number of operations as a function of N . Both input data and the

locations of the sampling points are random. The dashed curve is the

theoretically predicted curve O(N log2 N) passing through the last point.
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Summary of NUFFT
• Direct evaluation of nonuniform DFT is expensive, requiring O(N 2)

arithmetic operations.

• Through least-square interpolation, we discover a new class of

matrices, the Regular Fourier Matrices F (m, N, q).

• The NUFFT algorithm proposed is accurate as it has a least-square

error in the interpolation of the basis.

• Other related forward and inverse NUDFTs can be also calculated by

the NUFFT.

• The NUFFT algorithm is a fundamental technique useful to many

other applications.
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FFT for Discontinuous Functions: Motivation
• For smooth periodic functions, the FFT provides a high accuracy.

• FFT results have greatly reduced accuracy for discontinuous

functions.

• Examples: Electromagnetic field in a discontinuous medium.

• The source of inaccuracy

-Trapezoidal rule in the Fourier integration.

-Error is proportional to O( 1
N )

• Methods for FFT of discontinuous functions (Fan/Liu, 2001; 2004)

-Sorets (1995) treats piecewise constant functions

-This work is an extension to piecewise smooth functions
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Formulation of DFFT
• Fourier Transform of f(x) (a piecewise smooth function)

f̂(n) =

1
∫

0

f(x)e−i2πnxdx, −
N

2
< n ≤

N

2
− 1

• Integration in L sections

f̂(n) =

L
∑

l=1

xl
∫

xl−1

f(x)e−i2πnx dx

• By change of variables, each section can be evaluated by Gaussian
Legendre quadrature

∫ 1

−1

y(t) dt ∼=

q
∑

k=1

y(tk) ωk



26'

&

$

%

• Summation

f̂(n) ∼=

L
∑

l=1

bl

q
∑

k=1

ωk f(tlk) e−i2πntl
k

• However, here {tlk} are nonuniform.
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• Lagrange interpolation to a uniform grid

g(x) =

p
∑

m=1

g(xm) δm(x), δm(x) =

p
∏

n=1
n6=m

x − xn

xm − xn

• Double interpolation

f̂(n) =
L
∑

l=1

bl

q
∑

k=1

ωl
k

(

p1
∑

m1=1

f(tlm1
)δm1(t

l
k)

)

p
∑

m=1

e−i2πntl
mδm(tlk)

• Then it can be evaluated by the standard FFT

f̂(n) =
νN
∑

m=1

gm e−i2πnxm

gm =
L
∑

l=1

bl

q
∑

k=1

(

p1
∑

m1=1

f(tlm1
)δm1(t

l
k)

)

ωl
k δm(tlk)

ν is sampling factor ( ν = 2 in our calculation )



28'

&

$

%

• Advantages of double interpolation procedure

– Nonuniform FFT;

– Allows a lower order interpolation for the slowly varying function

f(x);

– Allows other efficient algorithms for interpolation of f(x), if

needed.
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Implementation and complexity of the DFFT algorithm

• Steps:

– Initialization of δm1(t
l
k) and δm(tlk). (This preprocessing is

needed only once). Complexity O(Np2).

– Calculation of gm. The complexity is O(Np).

– Calculation of f̂(n) in (9) by a standard FFT. The complexity is

O(νN log N).

• The total complexity is O(Np + νN log N) for last two steps.
The preprocessing need be done only once.
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Numerical Examples of DFFT
Example 1: Triangle Function
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f1(x) =







x−x1

x2−x1
x1 ≤ x ≤ x2

0 elsewhere
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Table 1. Errors and Run Times for Example 1
(Double Precision)

N Errors (E∞) Timings (ms)

This paper Direct Init. Eval. FFT Direct

64 1.130e-13 9.683e-03 51.0 1.30 0.51 0.13

128 1.120e-13 4.824e-03 102. 2.60 1.11 0.26

256 1.130e-13 2.408e-03 203. 5.21 2.47 0.58

512 1.120e-13 1.203e-03 406. 10.5 5.89 1.24
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Example 2: Sinusoidal Function
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 f 2(x
) 

2+ sin(64 π x)

f2(x) =







α + sin(2πβx) x1 ≤ x ≤ x2

elsewhere
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Table 2. Errors and Run Times for Example 2
(Double Precision)

N Errors (E∞) Timings (ms)

This paper Direct Init. Eval. FFT Direct

512 1.471e-11 5.820e-02 158. 4.28 5.81 1.25

1024 1.080e-12 2.920e-02 333. 8.41 13.0 2.67
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Example 3: 2-D Function
f(x, y) = f1(x) f2(y)

Table 3. Errors for the 2-D Problem in Example 3
(Double Precision)

N×M Errors (E∞)

This paper Direct

128×512 2.916e-12 1.697e-03

256×1024 2.700e-13 8.511e-04
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Summary of the DFFT
• A fast DFFT algorithm has been developed for the evaluation of

Fourier transform of piecewise smooth functions.

• DFFT can achieve NUFFT: It is applicable to both uniformly and
nonuniformly sampled data.

• The complexity of algorithm is O(Np + νN log N) plus O(Np2)

for precalculation.

• Numerical results demonstrate the efficiency and accuracy.
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Application 1: Integral Equation
Solution by the CGFFT Method
• 1-D EM scattering problem Plane wave scattering from a slab of

finite width

• Integral equation

Einc(x) = E(x) +

l
∫

0

G(x − x′)J(x′) dx

• J(x) = k2
0[εr(x) − 1]E(x) is the unknown equivalent current

• G(x − x′) is the 1-D Green’s function in free space

• Convolution integral is evaluated by Fourier transform

Einc(x) = E(x) + F−1 {F{G(x)}F{J(x)} }

F and F−1 denote the forward and inverse Fourier transform.
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Example 1:
Comparison of CGFFT and DFFT at a High Sampling Rate
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Comparison of CGFFT algorithms for dielectric slab with a low εr

contrast. εr = 2, f = 2.75 GHz.

• Sampling density: 10 PPW
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Example 2: Lower Sampling Rate (Higher Frequency)
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Same as Example 1 except f = 5.5 GHz.

• Sampling density: 5 PPW
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Example 3: Lower Sampling Rate and High Contrast
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Same as Example 1 except with a higher contrast, εr = 8.

• Sampling density: 5 PPW
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Application 2: Ground Penetrating Radar Using NUFFT
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Application 3: MRI Image Reconstruction

Conventional and NUFFT reconstructed results
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Error in the conventional method and in the NUFFT
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Error Comparison
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Comparison of the conventional and NUFFT reconstructions in L2 error.

NUFFT: 1.49%, Interpolation: 12.25%
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Summary and Conclusions
• NUFFT algorithms with O(N log N) operations have been

developed in recent years and received considerable attention.
We presented a simple method based on least-square interpolation of

the basis, inspired by the original work by Dutt and Rokhlin.

• A fast DFFT algorithm has been developed for the Fourier
transform for discontinuous functions with O(Np + νN log N)

operations.

• Both NUFFT and DFFT algorithms have many applications:

– Numerical solution of wave equations

– Ground penetrating radar and synthetic aperture radar processing

– CT and MRI image reconstruction
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