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Subject of This Talk

FMMs for the Helmholtz (Maxwell’'s) Equa-
tion at High Frequency

Overview, state of implementation, etc.

Something of a misnomer and a miscon-
ception

Disclaimer: Boeing, HRL, Illinois,
MadMax...

Expected audience



FMM for the Helmholtz
(Maxwell) Equation

- Function: evaluate potentials, fields, etc.
of charge distributions. N2 vs. N or
N - log(N), or N - (log(N))2. . .

- Does not provide discretizations, integral
formulations, iterative solvers, etc. (left to
the user as an exercise)

- Indifferent to all of these issues - explain

- In reality, consists of two procedures. One
Is used on the subwavelength scale (or in
low-frequency environments), the other is
used in the high-frequency environment; tran-
sition is seamiless



L ow-Frequency
(Subwavelength) Environment

- Similar to Laplace - explain

- Very simple “bare-bones” scheme, more in-
volved “modern” versions

- Fairly fast: (several times slower than the
Laplace FMM) for groups up to 4 \ or so
(define the groups)

- Break-even points
- Behavior as groups increase

- Serious deterioration for groups greater than
5to 8 A

- Fairly simple implementations produce ac-
ceptable results



High-Frequency Environment

- Not at all similar to the Laplace case: “0s-
cillatory behavior”

- Example with the Moon

- “At a fixed number of points per A, the
rank of each submatrix is proportional to
its size” - not quite true, Michielssen coun-
terexample

- How bad is it?

- Let us see



At the Bottom of the Scheme

N Sources M Targets

'LkHQz j”
V(@)= Z CAToRax

Direct evaluation requires O(NM) work.



At the Bottom of the Scheme II

- P
\f\,
[
I
o 4 '
. “w.
° » | J

/ Radius = R

e

Y n
VQ)=V(ro,¢)= D> >  MPY7(0,d)hn(kr),

n=0m=-n

with multipole moments

N
M= 3" q;¥,, (05, 6;)n(kr), P = (r},05, ¢;)
=1

In the low frequency regime, the error in the
multipole approximation decays like (R/|Q|)PT1.

For our simple example, R/|Q| < 1/2, so that
setting p = 1092(%) yields a precision of e.

6



Y

.
| X 2

N Sources M Targets

i

®

Evaluate multipole coefficients M for n =
O0,...,p

Evaluate expansion at target points @, for
j=1,....M

Total operation count: p2-(N+M) = (N+
M) -log?(1)

|

The schemes depend critically on p? being
much smaller than N



N Sources M Targets

o n
V(r,0,9)~ >, Y, MpY;"(8,¢)hn(kr)

=0 m=—n

- Coefficients M/ do not start decaying until
n > |k - R|, after which decay is extremely
rapid

- Condition p > |k- R4+ O(|k- R|1/3) is needed
if we are to have any accuracy at all



N Sources M Targets

p IS proportional to —I;i

i

- In BIE discretizations: fixed number of nodes
per \2

- Thus, total number of elements in the ex-
pansion is of the same order as N

None of the O(N-log(N)) schemes (Barnes-
Hut, etc.) will work in this regime



»»»»»»»»»»»»»

Hard Life III

N Sources M Targets

Another way to put it: the rank approach
will not work because the ranks are high

Cooked goose, vicious gloating

The situation is a little better when vol-
ume distributions and volume integrals are
considered, but not enough - and there is
FFT-based competition

What about order N algorithms (FMMs)?

10



Translation Operators (h — h)

P T “,‘"’“":'J:“ - (rzes(p) Q
H
H R A N
s
SO o e ey .- i
H H 1
: : P |
H T
P e
X t o~
p n

Z Z MY, (0, ¢)hn(kr) —

n=0m=-—n
yy n

— Y > NTY (e, B)hn(kp)

n=0Q m=—-n

- Cost: O(p*)
- O(p3) via “point and shoot” procedure

- Fatal in the BIE environment

11




p n

Y. D MPYM(6,9)hn(kr) —

n=0m=-—n

r £

S Y Y LY, B) jn(kp)

n=0m=-n

- No better than h — h

- Dominant type of translation in an FMM

12



Translation Operators (j — 7)

(rseg(p) Q (pvaﬂﬂ)
..... 3 ozl ; - /
p n

> 2. Lavpn(0,¢) jn(kr) —

n=0m=—n
p n

= > > oYy« B) jn(kp)

n=0 m=-n
- Same as h — h

13



Grim Observation

Ranks of translation operators in the high-
frequency Helmholtz (Maxwell’s, etc.) en-
vironment are proportional to the sizes of
the groups in wavelengths (with subtle ex-
ceptions - Michielssen)

For surface distributions of charges, any
FMM that as much as creates translation
operators will be of order at least O(N?) -
horror!

Translation operators in their “point and
shoot” form reduce best possible order to
O(N3/2) - not nearly good enough

Classical translation operators are of lit-
tle use in the construction of Heimholtz
FMMs, except at low frequencies

14



What Is Needed

- Bases in which translation operators are di-
agonal, or at least very sparse

- Transitions between such bases must be
very sparse

- Transitions between the standard represen-
tations (partial wave expansions) and the
new bases must be very sparse

- Alternatively, it should be possible to carry
out the whole procedure in the “dual” bases

- Where does one find such paragons?

15



A Pleasant Observation

- All translation operators on a given level
are diagonalized by the same unitary oper-
ator

- All diagonal forms are available analytically

- Transitions between bases (corresponding
to different levels) can be done in a “fast”
manner

- The whole procedure is quite simple, as
long as it is understood in an appropriate
weak sense

16



~+00 n

NT=m—00 M=—T7
P(7,0,¢)= >, > M7Y;"(0,)hn(kF)
N=-—00 M=-—"n

Sommerfeld condition:

im P(r,0,0)-r-e "R = F(0, $)

T OO

17



Observation

The mapping
U:{M)'} = F(6,9)
diagonalizes the translation operator
Thp - {M'} — {M7'}

On the diagonal

ei-k-wcos(Vp)

18



For large r,

(0,8) ~ (8,9),

which means that the mapping
U loT,,oU :F— F
is diagonal. For large r,

F—1r~a-cos(vy),

and
(U™ 0 Thp o U) (8,) = & @eos(®)

19



What Is U7

For large r

cl-k-r

hm(kr) ~

(up to some powers of i), and

p n
Z Z M?Tygl(ea(f?)hn(k”") ~

n=0Q0m=-—n

zk'r

Z Z MIY(6, ¢) = F(6,¢)

n=0m=—-n

20



Wwhat Have We Achieved?

- Ty5, is a spherical convolution; it is diag-
onalized by the spherical harmonic trans-
form: its diagonal form is a function living
on S2.

- Ty, is unitary; its diagonal is et"kacos(¥)

- Direct result of the Sommerfeld condition,
and has been known for a long time

- And what about Tj; and 1,7

21



Diagonalizing T},

For large r

cos(k-r)

Im(kr) ~

(up to some phase corrections), and

P n
Z Z Mnggn(Q’(p)jn(kr) ~

n=0m=-—n

cos(k-r) & LA
o oSBT S ymym (e, ) = F (6, )

k « T nmomm*n

- A Sommerfeld condition of sorts

22



Diagonalizing 15, 11

b n
Z Z MY (0, 9) jn(kr) ~

n=0Q0m=-—n

cos(k-r) & n
o costhir) SN ymymeg o)

k - T nxo m=—n

- Makes no physical sense whatsoever

- AS p — oo, the limit usually does not even
exist!

- First truncate, then take the limit; for this,
we will pay later

- Diagonalized by the harmonic transform,
same as 1y;; the same elkracos(¥) on the
diagonal

- Purely formal expedient

23



Far-field signature of a unit charge is given by
the formula

F(8,p) = ei-k-a-cos(w);

The potential at the point (a,0,¢) of the J —
expansion With the far-field signature o is given
by the formula

P(a,8, ) m/

o (8, 3) - o ik-arcos(¥) 4

24



R T I R R

What about Tj;7

- We will use the Category Theory!

(M7} T (N}
Thh Lhi T},
(M7} Th; {N7'}

¥

Operators Ty, Tj; are diagonal in the far-

field representation, and Ty, = Tjj

|

Furthermore,

Tjjj o Thj = Thj o) Thh

Inevitable consequences

Commutative diagrams, morality, etc.

25



What Is On The Diagonal?

S (21 + 1) hn(k p) Pa(COS(3))

n==0

“Addition theorem”

- Abramovitz and Stegun

- Series above is divergent; truncation, ac-
curacy, dynamic range, etc.

- Usual situation with convolutions with di-
vergent sequences

- Analysis is a little detailed; results are sum-
marized below

- Variations: beam-like translation operators,
etc.

26



- All translations within one level are diago-
nalized by the far-field signature

- Far-field signatures of charge (dipole, what-
ever) distributions are given by simple for-
mulae, and fairly inexpensive to evaluate

- Far-field signatures are smooth functions
on the sphere, and can be represented by
tables of their values - elaborate

- Transitions between levels involve interpo-
lation and filtering of functions on the sphere.
Interpolation is easy; filtering has been taken
care of (Alpert-Jacob-Chien Algorithm, Dem-
bart and VR, etc.)

27



“Low-Frequency Break-Down"
S nmd
p

- Outgoing h-expansion behaves as jn(kr)

- Incoming j-expansion is a convolution of
the outgoing h-expansion with the original
(physical space) translation operator: the
latter behaves as hn(kp)

- The potential at a point within the tar-
get sphere (circle) is obtained as an inner
product of the incoming j-expansion with
a sequence behaving as jn(kr)

28



“Low-Frequency Break-Down"
II

Behavior of Bessel Functions:

50

40t
30¢
20| log10(Ha(200.0)) —
10}
0 2
_10 L
20} log10(J(200.0))
30! T
-40}
-50 :

0 50 200 250 300 350

S

- When convolutions are done explicitly, the
procedure is numerically stable as long as
the spheres do not intersect (physics never
lies, even if it takes a conspiracy)

29




“Low-Frequency Break-Down"
I11

S

- When convolutions are done via Fourier
Transforms (or via spherical transforms)
the dynamic range of each sequence must
not be large. In other words, Jn(kr) must
Implode before Hy,(kp) explodes

- For sufficiently large kr, the condition p >
3r is sufficient. For smaller r, greater sep-
aration is needed

- Separation depends on the required accu-
racy, kr, and the machine ¢ - explain

- In this case, a table is worth a thousand
theories

30



“Low-Frequency Break-Down':
Table

- Double precision calculations

3 digits 0.25 ) side of the cube
6 digits 3.50 X side of the cube
9 digits 12.0 X\ side of the cube

- Similarity with evaluation sin(10)
- explain

- Marginal improvements are possible

31



“"Low-Frequency Break-Down'':
Remedy

=D

- What does one do in the subwavelength
regime?

- Use the low-frequency version of the FMM

- Transition to the high-frequency (diago-
nal) version at the appropriate point

- We have not tried to play with the size of
the buffer

32



Numerical Examples
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-10

in size

- 50 wavelengths

06E-6 A

1

le

- Smallest triang

86E-1 A\

-

2

- L.argest triangle

706,300

langles:

- Number of tr

- Single node per triangle
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A-10 - Helmholtz
T Error Error T Mem.
(dir.) | Acc. | (pot.) (grad.) | (sec.) | (Mb)
337329 | 1073 | 0.43E-3 | 0.56E-3 485 300
337329 | 10°% | 0.48E-6 | 0.50E-6 1291 790
337329 | 1072 | 0.11E-9 | 0.95E-10 | 2947 1143
A-10 - Laplace
T Error Error T Mem.
(dir.) | Acc. (pot.) (grad.) | (sec.) | (Mb)
60590 | 103 0.27E-3 0.37E-4 48.3 211
60590 | 10°° 0.19E-6 0.43E-7 119 202
60590 | 10792 | 0.85E-10 | 0.61E-11 | 2437 376
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§

50 wavelengths in size

Smallest triangle: 9.34E-3 A\
Largest triangle: 3.27E-1 A
Number of triangles: 872,694
Single node per triangle

36



Horse - Helmholtz

T Error Error T Mem.
(dir.) | Acc. | (pot.) (grad.) | (sec.) | (Mb)
646143 | 107> | 0.65E-3 | 0.31E-3 672 549
646143 | 10~ | 0.66E-6 | 0.92E-7 | 1832 | 1111
646143 | 10-9 | 0.33E-9 | 0.33E-11 | 3515 | 2027
Horse - Laplace

T Error Error T Mem.
(dir.) | Acc. | (pot.) (grad.) | (sec.) | (Mb)
107833 | 103 | 0.91E-3 | 0.57E-3 | 63.7 328
107833 | 10°% | 0.46E-6 | 0.31E-6 | 139.7 322
107833 | 1072 | 0.25E-9 | 0.10E-9 | 298 584
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i

Sphere

50 wavelengths in size
Smallest triangle: 4.91E-2 A
Largest triangle: 6.27E-2 A
Number of triangles: 619,520

Single node per triangle

38



Sphere - Helmholtz

T Error Error T Mem.
(dir.) | Acc. (pot.) (grad.) | (sec.) | (Mb)
324381 | 1072 | 0.27E-3 0.19E-3 521 416
324381 | 107% | 0.15E-6 0.42E-7 1358 014
324381 | 1072 | 0.91E-10 | 0.24E-10 2873 1474
Sphere - Laplace
T Error Error T Mem.
(dir.) | Acc. | (pot.) (grad.) | (sec.) | (Mb)
52036 | 10> | 0.79E-3 | 0.90E-3 45 245
52036 | 10~° | 0.33E-6 | 0.45E-6 | 97.7 244
52036 | 107° | 0.19E-9 | 0.12E-9 223 402

39




f

Cube

50 wavelengths in size
Smallest triangle: 9.12E-2 A
Largest triangle: 9.12E-2 A
Number of triangles: 668, 352

Single node per triangle
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Cube - Helmholtz
T Error Error T Mem.
(dir.) | Acc. | (pot.) (grad.) | (sec.) | (Mb)
376950 | 10~° | 0.97TE-3 | 0.7T4E-3 393 364
376950 | 107° | 0.73E-6 | 0.26E-7 1022 1295
376950 | 1079 | 0.23E-9 | 0.17E-10 | 2077 1001 |
Cube - Laplace
T Error Error T Mem.
(dir.) | Acc. | (pot.) (grad.) | (sec.) | (Mb)
56433 | 1073 0.94-3 0.60E-3 h2 201
56433 | 10°° | 0.41E-6 | 0.34E-6 132 272
56433 | 1079 | 0.28E-9 | 0.17E-9 231 362

41




§

Conclusions

A fairly mature technology

Unlike the Laplace case, it is technical (as
opposed to incantational), even on the most
basic level - explain

It is not enough to “invent” an order n (or
n -log(n), or whatever) scheme any more -
constants matter

Accuracy control, careful testing, etc.
Implementation practices
Robustness and ease of use

Algorithms are becoming technical and in-
volved: have to be developed by competent
groups

An engineering discipline vs. black art

There are still some freebies left!
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