FMM FOR HIGHLY OSCILLATORY
PROBLEMS

PROF. VLADIMIR ROKHLIN

YALE

### Subject of This Talk

- FMMs for the Helmholtz (Maxwell's) Equation at High Frequency
- Overview, state of implementation, etc.
- Something of a misnomer and a misconception
- Disclaimer: Boeing, HRL, Illinois, MadMax...
- Expected audience

# FMM for the Helmholtz (Maxwell) Equation

- Function: evaluate potentials, fields, etc. of charge distributions.  $N^2$  vs. N or  $N \cdot log(N)$ , or  $N \cdot (log(N))^2$ . . .
- Does not provide discretizations, integral formulations, iterative solvers, etc. (left to the user as an exercise)
- Indifferent to all of these issues explain
- In reality, consists of two procedures. One is used on the subwavelength scale (or in low-frequency environments), the other is used in the high-frequency environment; transition is seamless

# Low-Frequency (Subwavelength) Environment

- Similar to Laplace explain
- Very simple "bare-bones" scheme, more involved "modern" versions
- Fairly fast: (several times slower than the Laplace FMM) for groups up to 4  $\lambda$  or so (define the groups)
- Break-even points
- Behavior as groups increase
- Serious deterioration for groups greater than 5 to 8  $\lambda$
- Fairly simple implementations produce acceptable results

### High-Frequency Environment

- Not at all similar to the Laplace case: "oscillatory behavior"
- Example with the Moon
- "At a fixed number of points per  $\lambda$ , the rank of each submatrix is proportional to its size" not quite true, Michielssen counterexample
- How bad is it?
- Let us see

#### At the Bottom of the Scheme



$$V(Q_i) = \sum_{j=1}^{N} q_j \frac{e^{ik||Q_i - P_j||}}{||Q_i - P_j||}$$

Direct evaluation requires O(NM) work.

#### At the Bottom of the Scheme II



$$V(Q) = V(r, \theta, \phi) \approx \sum_{n=0}^{p} \sum_{m=-n}^{n} M_n^m Y_n^m(\theta, \phi) h_n(kr),$$

with multipole moments

$$M_n^m = \sum_{j=1}^N q_j Y_n^{-m}(\theta_j, \phi_j) j_n(kr), \ P_j = (r_j, \theta_j, \phi_j)$$

In the low frequency regime, the error in the multipole approximation decays like  $(R/|Q|)^{p+1}$ .

For our simple example, R/|Q| < 1/2, so that setting  $p = \log_2(\frac{1}{\varepsilon})$  yields a precision of  $\varepsilon$ .

#### At the Bottom III



- Evaluate multipole coefficients  $M_n^m$  for  $n=0,\ldots,p$
- Evaluate expansion at target points  $Q_j$ , for  $j=1,\ldots,M$
- Total operation count:  $p^2 \cdot (N+M) = (N+M) \cdot \log^2(\frac{1}{\epsilon})$
- The schemes depend critically on  $p^2$  being much smaller than  ${\cal N}$

### Hard Life at High Frequencies



$$V(r, \theta, \phi) \approx \sum_{n=0}^{p} \sum_{m=-n}^{n} M_n^m Y_n^m(\theta, \phi) h_n(kr)$$

- Coefficients  $M_n^m$  do not start decaying until  $n>|k\cdot R|$ , after which decay is extremely rapid
- Condition  $p > |k \cdot R + O(|k \cdot R|^{1/3})$  is needed if we are to have any accuracy at all

#### Hard Life II



- p is proportional to  $\frac{R}{\lambda}$
- In BIE discretizations: fixed number of nodes per  $\lambda^2$
- Thus, total number of elements in the expansion is of the same order as  ${\cal N}$
- None of the  $O(N \cdot log(N))$  schemes (Barnes-Hut, etc.) will work in this regime

#### Hard Life III



- Another way to put it: the rank approach will not work because the ranks are high
- Cooked goose, vicious gloating
- The situation is a little better when volume distributions and volume integrals are considered, but not enough and there is FFT-based competition
- What about order N algorithms (FMMs)?

# Translation Operators $(h \rightarrow h)$



$$\sum_{n=0}^{p} \sum_{m=-n}^{n} M_n^m Y_n^m(\theta, \phi) h_n(kr) \rightarrow$$

$$\rightarrow \sum_{n=0}^{p} \sum_{m=-n}^{n} N_n^m Y_n^m(\alpha, \beta) h_n(k\rho)$$

- Cost:  $O(p^4)$
- $O(p^3)$  via "point and shoot" procedure
- Fatal in the BIE environment

## Translation Operators $(h \rightarrow j)$



$$\sum_{n=0}^{p} \sum_{m=-n}^{n} M_n^m Y_n^m(\theta, \phi) h_n(kr) \rightarrow$$

$$\rightarrow \sum_{n=0}^{p} \sum_{m=-n}^{n} L_n^m Y_n^m(\alpha, \beta) j_n(k\rho)$$

- No better than  $h \to h$
- Dominant type of translation in an FMM

# Translation Operators $(j \rightarrow j)$



$$\sum_{n=0}^{p} \sum_{m=-n}^{n} L_n^m Y_n^m(\theta, \phi) j_n(kr) \rightarrow$$

$$\rightarrow \sum_{n=0}^{p} \sum_{m=-n}^{n} O_n^m Y_n^m(\alpha, \beta) j_n(k\rho)$$

- Same as  $h \to h$ 

#### Grim Observation

- Ranks of translation operators in the high-frequency Helmholtz (Maxwell's, etc.) environment are proportional to the sizes of the groups in wavelengths (with subtle exceptions Michielssen)
- For surface distributions of charges, any FMM that as much as creates translation operators will be of order at least  $O(N^2)$  horror!
- Translation operators in their "point and shoot" form reduce best possible order to  $O(N^{3/2})$  not nearly good enough
- Classical translation operators are of little use in the construction of Helmholtz FMMs, except at low frequencies

#### What Is Needed

- Bases in which translation operators are diagonal, or at least very sparse
- Transitions between such bases must be very sparse
- Transitions between the standard representations (partial wave expansions) and the new bases must be very sparse
- Alternatively, it should be possible to carry out the whole procedure in the "dual" bases
- Where does one find such paragons?

#### A Pleasant Observation

- All translation operators on a given level are diagonalized by the same unitary operator
- All diagonal forms are available analytically
- Transitions between bases (corresponding to different levels) can be done in a "fast" manner
- The whole procedure is quite simple, as long as it is understood in an appropriate weak sense

## Radiation Potentials and $T_{hh}$



$$P(r,\theta,\varphi) = \sum_{n=-\infty}^{+\infty} \sum_{m=-n}^{n} M_n^m Y_n^m(\theta,\phi) h_n(kr)$$

$$P(\tilde{r}, \tilde{\theta}, \tilde{\varphi}) = \sum_{n=-\infty}^{\infty} \sum_{m=-n}^{n} \tilde{M}_{n}^{m} Y_{n}^{m}(\tilde{\theta}, \tilde{\phi}) h_{n}(k\tilde{r})$$

Sommerfeld condition:

$$\lim_{r \to \infty} P(r, \theta, \varphi) \cdot r \cdot e^{-i \cdot k \cdot r} = F(\theta, \phi)$$

#### Observation

The mapping

$$U:\{M_n^m\}\to F(\theta,\phi)$$

diagonalizes the translation operator

$$T_{hh}:\{M_n^m\}\to\{\tilde{M}_n^m\}$$

On the diagonal



#### Proof:



For large r,

$$( ilde{ heta}, ilde{arphi})\sim ( heta,arphi),$$

which means that the mapping

$$U^{-1} \circ T_{hh} \circ U : F \to \tilde{F}$$

is diagonal. For large r,

$$\tilde{r} - r \sim a \cdot cos(\psi),$$

and

$$(U^{-1} \circ T_{hh} \circ U) (\theta, \varphi) = e^{i \cdot k \cdot a \cdot \cos(\psi)}$$

#### What Is U?

For large r

$$h_m(kr) \sim rac{e^{i \cdot k \cdot r}}{k \cdot r}$$

(up to some powers of i), and

$$\sum_{n=0}^{p} \sum_{m=-n}^{n} M_n^m Y_n^m(\theta, \varphi) h_n(kr) \sim$$

$$\sim \frac{e^{i \cdot k \cdot r}}{k \cdot r} \sum_{n=0}^{p} \sum_{m=-n}^{n} M_n^m Y_n^m(\theta, \varphi) = F(\theta, \varphi)$$



#### What Have We Achieved?

- $T_{hh}$  is a spherical convolution; it is diagonalized by the spherical harmonic transform; its diagonal form is a function living on  $S^2$ .
- $T_{hh}$  is unitary; its diagonal is  $e^{i \cdot k \cdot a \cdot cos(\psi)}$
- Direct result of the Sommerfeld condition,
   and has been known for a long time
- And what about  $T_{jj}$  and  $T_{hj}$ ?

# Diagonalizing $T_{jj}$

For large r

$$j_m(kr) \sim rac{cos(k \cdot r)}{k \cdot r}$$

(up to some phase corrections), and

$$\sum_{n=0}^{p} \sum_{m=-n}^{n} M_n^m Y_n^m(\theta, \varphi) j_n(kr) \sim$$

$$\sim \frac{\cos(k \cdot r)}{k \cdot r} \sum_{n=0}^{p} \sum_{m=-n}^{n} M_n^m Y_n^m(\theta, \varphi) = F(\theta, \varphi)$$

- A Sommerfeld condition of sorts

# Diagonalizing $T_{jj}$ II

$$\sum_{n=0}^{p} \sum_{m=-n}^{n} M_n^m Y_n^m(\theta, \varphi) j_n(kr) \sim$$

$$\sim \frac{\cos(k \cdot r)}{k \cdot r} \sum_{n=0}^{p} \sum_{m=-n}^{n} M_n^m Y_n^m(\theta, \varphi)$$

- Makes no physical sense whatsoever
- As  $p \to \infty$ , the limit usually does not even exist!
- First truncate, then take the limit; for this, we will pay later
- Diagonalized by the harmonic transform, same as  $T_{hh}$ ; the same  $e^{i \cdot k \cdot a \cdot cos(\psi)}$  on the diagonal
- Purely formal expedient

#### Corollary



Far-field signature of a unit charge is given by the formula

$$F(\theta,\varphi) = e^{i \cdot k \cdot a \cdot \cos(\psi)};$$

The potential at the point  $(a, \theta, \varphi)$  of the J-expansion with the far-field signature  $\sigma$  is given by the formula

$$P(a, \theta, \varphi) = \int_{S^2} \sigma(\tilde{\theta}, \tilde{\varphi}) \cdot e^{-i \cdot k \cdot a \cdot \cos(\psi)} ds$$

# What about $T_{hj}$ ?

- We will use the Category Theory!



- Operators  $T_{hh}$ ,  $T_{jj}$  are diagonal in the far-field representation, and  $T_{hh}=T_{jj}$
- Furthermore,

$$T_{jj} \circ \tilde{T}_{hj} = \tilde{T}_{hj} \circ T_{hh}$$

- Inevitable consequences
- Commutative diagrams, morality, etc.

## What Is On The Diagonal?

$$\sum_{n=0}^{\infty} (2n+1) h_n(k\rho) P_n(\cos(\psi))$$

- "Addition theorem"
- Abramovitz and Stegun
- Series above is divergent; truncation, accuracy, dynamic range, etc.
- Usual situation with convolutions with divergent sequences
- Analysis is a little detailed; results are summarized below
- Variations: beam-like translation operators, etc.

### Summary



- All translations within one level are diagonalized by the far-field signature
- Far-field signatures of charge (dipole, whatever) distributions are given by simple formulae, and fairly inexpensive to evaluate
- Far-field signatures are smooth functions on the sphere, and can be represented by tables of their values elaborate
- Transitions between levels involve interpolation and filtering of functions on the sphere.
   Interpolation is easy; filtering has been taken care of (Alpert-Jacob-Chien Algorithm, Dembart and VR, etc.)

## "Low-Frequency Break-Down"



- Outgoing h-expansion behaves as  $j_n(k\,r)$
- Incoming j-expansion is a convolution of the outgoing h-expansion with the original (physical space) translation operator; the latter behaves as  $h_n(k\,\rho)$
- The potential at a point within the target sphere (circle) is obtained as an inner product of the incoming j-expansion with a sequence behaving as  $j_n(k\,r)$

# "Low-Frequency Break-Down" II

Behavior of Bessel Functions:



 When convolutions are done explicitly, the procedure is numerically stable as long as the spheres do not intersect (physics never lies, even if it takes a conspiracy)

 $\rho$ 

# "Low-Frequency Break-Down" III



- When convolutions are done via Fourier Transforms (or via spherical transforms) the *dynamic range* of each sequence must not be large. In other words,  $J_n(kr)$  must **implode** before  $H_{2n}(k\rho)$  **explodes**
- For sufficiently large  $k\,r$ , the condition  $\rho \geq 3\,r$  is sufficient. For smaller r, greater separation is needed
- Separation depends on the required accuracy,  $k\,r$ , and the machine  $\varepsilon$  explain
- In this case, a table is worth a thousand theories

# "Low-Frequency Break-Down": Table



- Double precision calculations

```
3 digits 0.25 \lambda side of the cube 6 digits 3.50 \lambda side of the cube 9 digits 12.0 \lambda side of the cube
```

- Similarity with evaluation sin(10)
  - explain
- Marginal improvements are possible

# "Low-Frequency Break-Down": Remedy



- What does one do in the subwavelength regime?
- Use the low-frequency version of the FMM
- Transition to the high-frequency (diagonal) version at the appropriate point
- We have not tried to play with the size of the buffer

# Numerical Examples

q

#### A-10



- 50 wavelengths in size
- Smallest triangle: 1.06E-6  $\lambda$
- Largest triangle: 2.86E-1  $\lambda$
- Number of triangles: 706,300
- Single node per triangle

## A-10 - Helmholtz

| T      |           | Error   | Error    | T      | Mem. |
|--------|-----------|---------|----------|--------|------|
| (dir.) | Acc.      | (pot.)  | (grad.)  | (sec.) | (Mb) |
| 337329 | $10^{-3}$ | 0.43E-3 | 0.56E-3  | 485    | 300  |
| 337329 | $10^{-6}$ | 0.48E-6 | 0.50E-6  | 1291   | 790  |
| 337329 | $10^{-9}$ | 0.11E-9 | 0.95E-10 | 2947   | 1143 |

# A-10 - Laplace

| T      |           | Error    | Error    | T      | Mem. |
|--------|-----------|----------|----------|--------|------|
| (dir.) | Acc.      | (pot.)   | (grad.)  | (sec.) | (Mb) |
| 60590  | $10^{-3}$ | 0.27E-3  | 0.37E-4  | 48.3   | 211  |
| 60590  | $10^{-6}$ | 0.19E-6  | 0.43E-7  | 119    | 292  |
| 60590  | $10^{-9}$ | 0.85E-10 | 0.61E-11 | 2437   | 376  |

#### Horse



- 50 wavelengths in size
- Smallest triangle: 9.34E-3  $\lambda$
- Largest triangle: 3.27E-1  $\lambda$
- Number of triangles: 872,694
- Single node per triangle

# Horse - Helmholtz

|        |                    | Error   | Error    |        | Mem. |
|--------|--------------------|---------|----------|--------|------|
| (dir.) | Acc.               | (pot.)  | (grad.)  | (sec.) | (Mb) |
| 646143 | 3 10 <sup>-3</sup> | 0.65E-3 | 0.31E-3  | 672    | 549  |
| 646143 |                    | 0.66E-6 | 0.92E-7  | 1832   | 1111 |
| 646143 | $  10^{-9}$        | 0.33E-9 | 0.33E-11 | 3515   | 2027 |

# Horse - Laplace

| <b>T</b> |           | Error   | Error   | T      | Mem. |
|----------|-----------|---------|---------|--------|------|
| (dir.)   | Acc.      | (pot.)  | (grad.) | (sec.) | (Mb) |
| 107833   | $10^{-3}$ | 0.91E-3 | 0.57E-3 | 63.7   | 328  |
| 107833   | $10^{-6}$ | 0.46E-6 | 0.31E-6 | 139.7  | 322  |
| 107833   | $10^{-9}$ | 0.25E-9 | 0.10E-9 | 298    | 584  |

### Sphere

- 50 wavelengths in size
- Smallest triangle: 4.91E-2  $\lambda$
- Largest triangle: 6.27E-2  $\lambda$
- Number of triangles: 619,520
- Single node per triangle

# Sphere - Helmholtz

| T      |                  | Error    | Error    | T      | Mem. |
|--------|------------------|----------|----------|--------|------|
| (dir.) | Acc.             | (pot.)   | (grad.)  | (sec.) | (Mb) |
| 324381 | 10-3             | 0.27E-3  | 0.19E-3  | 521    | 416  |
| 324381 | 10 <sup>-6</sup> | 0.15E-6  | 0.42E-7  | 1358   | 914  |
| 324381 | $10^{-9}$        | 0.91E-10 | 0.24E-10 | 2873   | 1474 |

# Sphere - Laplace

|        |           | Error   | Error   |        | Mem. |
|--------|-----------|---------|---------|--------|------|
| (dir.) | Acc.      | (pot.)  | (grad.) | (sec.) | (Mb) |
| 52936  | 10-3      | 0.79E-3 | 0.90E-3 | 45     | 245  |
| 52936  | $10^{-6}$ | 0.33E-6 | 0.45E-6 | 97.7   | 244  |
| 52936  | $10^{-9}$ | 0.19E-9 | 0.12E-9 | 223    | 402  |

## Cube

- 50 wavelengths in size
- Smallest triangle: 9.12E-2  $\lambda$
- Largest triangle: 9.12E-2  $\lambda$
- Number of triangles: 668,352
- Single node per triangle

# Cube - Helmholtz

|        |                  | Error   | Error    |        | Mem. |
|--------|------------------|---------|----------|--------|------|
| (dir.) | Acc.             | (pot.)  | (grad.)  | (sec.) | (Mb) |
| 376950 | 10 <sup>-3</sup> | 0.97E-3 | 0.74E-3  | 393    | 364  |
| 376950 | $10^{-6}$        | 0.73E-6 | 0.26E-7  | 1022   | 1295 |
| 376950 | $10^{-9}$        | 0.23E-9 | 0.17E-10 | 2077   | 1001 |

# Cube - Laplace

| T      |                  | Error   | Error   |        | Mem. |
|--------|------------------|---------|---------|--------|------|
| (dir.) | Acc.             | (pot.)  | (grad.) | (sec.) | (Mb) |
| 56433  | 10 <sup>-3</sup> | 0.94-3  | 0.60E-3 | 52     | 201  |
| 56433  | $10^{-6}$        | 0.41E-6 | 0.34E-6 | 132    | 272  |
| 56433  | $10^{-9}$        | 0.28E-9 | 0.17E-9 | 231    | 362  |

#### Conclusions

- A fairly mature technology
- Unlike the Laplace case, it is technical (as opposed to incantational), even on the most basic level - explain
- It is not enough to "invent" an order n (or  $n \cdot log(n)$ , or whatever) scheme any more constants matter
- Accuracy control, careful testing, etc.
- Implementation practices
- Robustness and ease of use
- Algorithms are becoming technical and involved; have to be developed by competent groups
- An engineering discipline vs. black art
- There are still some freebies left!